2024屆廣西南寧市馬山縣金倫中學(xué)、華僑、新橋、羅圩中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第1頁(yè)
2024屆廣西南寧市馬山縣金倫中學(xué)、華僑、新橋、羅圩中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第2頁(yè)
2024屆廣西南寧市馬山縣金倫中學(xué)、華僑、新橋、羅圩中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第3頁(yè)
2024屆廣西南寧市馬山縣金倫中學(xué)、華僑、新橋、羅圩中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第4頁(yè)
2024屆廣西南寧市馬山縣金倫中學(xué)、華僑、新橋、羅圩中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆廣西南寧市馬山縣金倫中學(xué)、華僑、新橋、羅圩中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的定義域?yàn)?,若,則()A. B.C. D.2.雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)是()A.和 B.和C.和 D.和3.若函數(shù)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B.C. D.4.已知函數(shù)在處取得極值,則的極大值為()A. B.C. D.5.已知公差為的等差數(shù)列滿足,則()A B.C. D.6.已知直線,若異面,,則的位置關(guān)系是()A.異面 B.相交C.平行或異面 D.相交或異面7.若拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)重合,則m的值為()A.4 B.-4C.2 D.-28.若正實(shí)數(shù)、滿足,且不等式有解,則實(shí)數(shù)取值范圍是()A.或 B.或C. D.9.已知直線與拋物線C:相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),,的斜率分別為,,則()A. B.C. D.10.給出下列結(jié)論:①如果數(shù)據(jù)的平均數(shù)為3,方差為0.2,則的平均數(shù)和方差分別為14和1.8;②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的值越接近于1.③對(duì)A、B、C三種個(gè)體按3:1:2的比例進(jìn)行分層抽樣調(diào)查,若抽取的A種個(gè)體有15個(gè),則樣本容量為30.則正確的個(gè)數(shù)是().A.3 B.2C.1 D.011.在棱長(zhǎng)為1的正四面體中,點(diǎn)滿足,點(diǎn)滿足,當(dāng)和的長(zhǎng)度都為最短時(shí),的值是()A. B.C. D.12.某產(chǎn)品的廣告費(fèi)用x與銷(xiāo)售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:廣告費(fèi)用(萬(wàn)元)4235銷(xiāo)售額(萬(wàn)元)49263954根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí)銷(xiāo)售額為A.63.6萬(wàn)元 B.65.5萬(wàn)元C.67.7萬(wàn)元 D.72.0萬(wàn)元二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則此三角形的最大邊長(zhǎng)為_(kāi)__________.14.命題“若,則二元一次不等式表示直線的右上方區(qū)域(包含邊界)”的條件:_________,結(jié)論:_____________,它是_________命題(填“真”或“假”).15.過(guò)圓上一點(diǎn)的圓的切線的一般式方程為_(kāi)_______16.如圖,在長(zhǎng)方體ABCD﹣A'B'C'D'中,點(diǎn)P,Q分別是棱BC,CD上的動(dòng)點(diǎn),BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在①,;②,,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中并解決問(wèn)題問(wèn)題:設(shè)等差數(shù)列的前項(xiàng)和為,________________,若,判斷是否存在最大值,若存在,求出取最大值時(shí)的值;若不存在,說(shuō)明理由注:如果選擇多個(gè)條件分別解答.按第一個(gè)解答記分18.(12分)已知圓的圓心在直線,且與直線相切于點(diǎn).(1)求圓的方程;(2)直線過(guò)點(diǎn)且與圓相交,所得弦長(zhǎng)為,求直線的方程.19.(12分)我們知道:當(dāng)是圓O:上一點(diǎn),則圓O的過(guò)點(diǎn)的切線方程為;當(dāng)是圓O:外一點(diǎn),過(guò)作圓O的兩條切線,切點(diǎn)分別為,則方程表示直線AB的方程,即切點(diǎn)弦所在直線方程.請(qǐng)利用上述結(jié)論解決以下問(wèn)題:已知圓C的圓心在x軸非負(fù)半軸上,半徑為3,且與直線相切,點(diǎn)在直線上,過(guò)點(diǎn)作圓C的兩條切線,切點(diǎn)分別為.(1)求圓C的方程;(2)當(dāng)時(shí),求線段AB的長(zhǎng);(3)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),求線段AB長(zhǎng)度的最小值.20.(12分)已知拋物線的焦點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn),其中點(diǎn)A在第一象限;(1)若直線的斜率為,求的值;(2)求線段的長(zhǎng)度的最小值21.(12分)在中,角的對(duì)邊分別為,且.(1)求;(2)若,的面積為,求.22.(10分)某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):x12345678y56.53122.7517.815.9514.51312.5根據(jù)以上數(shù)據(jù)繪制了散點(diǎn)圖觀察散點(diǎn)圖,兩個(gè)變量間關(guān)系考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對(duì)兩個(gè)變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與x的相關(guān)系數(shù).(1)用反比例函數(shù)模型求y關(guān)于x的回歸方程;(2)用相關(guān)系數(shù)判斷上述兩個(gè)模型哪一個(gè)擬合效果更好(精確到0.001),并用其估計(jì)產(chǎn)量為10千件時(shí)每件產(chǎn)品非原料成本;(3)根據(jù)企業(yè)長(zhǎng)期研究表明,非原料成本y服從正態(tài)分布,用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為的估計(jì)值,若非原料成本y在之外,說(shuō)明該成本異常,并稱(chēng)落在之外的成本為異樣成本,此時(shí)需尋找出現(xiàn)異樣成本的原因.利用估計(jì)值判斷上述非原料成本數(shù)據(jù)是否需要尋找出現(xiàn)異樣成本的原因?參考數(shù)據(jù)(其中):0.340.1151.531845777.55593.0630.70513.9參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,,相關(guān)系數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用導(dǎo)數(shù)的定義可求得的值.【詳解】由導(dǎo)數(shù)的定義可得.故選:D.2、C【解析】由雙曲線標(biāo)準(zhǔn)方程可得到焦點(diǎn)所在軸及半焦距的長(zhǎng),進(jìn)而得到兩個(gè)焦點(diǎn)坐標(biāo).【詳解】雙曲線中,,則又雙曲線焦點(diǎn)在y軸,故雙曲線的兩個(gè)焦點(diǎn)坐標(biāo)是和故選:C3、C【解析】函數(shù)有兩個(gè)零點(diǎn)等價(jià)于方程有兩個(gè)根,等價(jià)于與圖象有兩個(gè)交點(diǎn),通過(guò)導(dǎo)數(shù)分析的單調(diào)性,根據(jù)圖象即可求出求出的范圍.【詳解】函數(shù)有兩個(gè)零點(diǎn),方程有兩個(gè)根,,分離參數(shù)得,與圖象有兩個(gè)交點(diǎn),令,,令,解得當(dāng)時(shí),,在單調(diào)遞增,當(dāng)時(shí),,在單調(diào)遞減,且在處取得極大值及最大值,可以畫(huà)出函數(shù)的大致圖象如下:觀察圖象可以得出.故選:C.【點(diǎn)睛】本題主要考查函數(shù)零點(diǎn)的應(yīng)用,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.4、B【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可求出參數(shù)的值,從而得到函數(shù)解析式,再根據(jù)導(dǎo)函數(shù)得到函數(shù)單調(diào)性,即可求出函數(shù)的極值點(diǎn),從而求出函數(shù)的極大值;【詳解】解:因?yàn)?,所以,依題意可得,即,解得,所以定義域?yàn)?,且,令,解得或,令解得,即在和上單調(diào)遞增,在上單調(diào)遞減,即在處取得極大值,在處取得極小值,所以;故選:B5、C【解析】根據(jù)等差數(shù)列前n項(xiàng)和,即可得到答案.【詳解】∵數(shù)列是公差為的等差數(shù)列,∴,∴.故選:C6、D【解析】以正方體為載體說(shuō)明即可.【詳解】如下圖所示的正方體:和是異面直線,,;和是異面直線,,與是異面直線.所以兩直線與是異面直線,,則的位置關(guān)系是相交或異面.故選:D7、B【解析】根據(jù)拋物線和橢圓焦點(diǎn)與其各自標(biāo)準(zhǔn)方程的關(guān)系即可求解.【詳解】由題可知拋物線焦點(diǎn)為,橢圓左焦點(diǎn)為,∴.故選:B.8、A【解析】將代數(shù)式與相乘,展開(kāi)后利用基本不等式可求得的最小值,可得出關(guān)于實(shí)數(shù)的不等式,解之即可.【詳解】因?yàn)檎龑?shí)數(shù)、滿足,則,即,所以,,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,即的最小值為,因?yàn)椴坏仁接薪?,則,即,即,解得或.故選:A.II卷9、C【解析】設(shè),,由消得:,又,由韋達(dá)定理代入計(jì)算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.10、B【解析】對(duì)結(jié)論逐一判斷【詳解】對(duì)于①,則的平均數(shù)為,方差為,故①正確對(duì)于②,若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近于1,故②錯(cuò)誤對(duì)于③,對(duì)A、B、C三種個(gè)體按3:1:2的比例進(jìn)行分層抽樣調(diào)查,若抽取的A種個(gè)體有15個(gè),則樣本容量為,故③正確故正確結(jié)論為2個(gè)故選:B11、A【解析】根據(jù)給定條件確定點(diǎn)M,N的位置,再借助空間向量數(shù)量積計(jì)算作答.【詳解】因,則,即,而,則共面,點(diǎn)M在平面內(nèi),又,即,于是得點(diǎn)N在直線上,棱長(zhǎng)為1的正四面體中,當(dāng)長(zhǎng)最短時(shí),點(diǎn)M是點(diǎn)A在平面上的射影,即正的中心,因此,,當(dāng)長(zhǎng)最短時(shí),點(diǎn)N是點(diǎn)D在直線AC上的射影,即正邊AC的中點(diǎn),,而,,所以.故選:A12、B【解析】,∵數(shù)據(jù)的樣本中心點(diǎn)在線性回歸直線上,回歸方程中的為9.4,∴42=9.4×3.5+a,∴=9.1,∴線性回歸方程是y=9.4x+9.1,∴廣告費(fèi)用為6萬(wàn)元時(shí)銷(xiāo)售額為9.4×6+9.1=65.5考點(diǎn):線性回歸方程二、填空題:本題共4小題,每小題5分,共20分。13、【解析】可知B對(duì)的邊最大,再用正弦定理計(jì)算即可.【詳解】利用正弦定理可知,B對(duì)的邊最大,因?yàn)?,,所以?故答案為:14、①.②.二元一次不等式表示直線的右上方區(qū)域(包含邊界)③.真【解析】由二元一次不等式的意義可解答問(wèn)題.【詳解】因?yàn)椋淮尾坏仁剿硎镜膮^(qū)域如下圖所示:所以在的條件下,二元一次不等式表示直線的右上方區(qū)域(包含邊界),此命題是真命題.故答案為:;二元一次不等式表示直線的右上方區(qū)域(包含邊界);真15、【解析】求出過(guò)切線的半徑所在直線斜率,由垂直關(guān)系得切線斜率,然后得直線方程,現(xiàn)化為一般式【詳解】圓心為,,所以切線的斜率為,切線方程為,即故答案為:【點(diǎn)睛】本題考查求過(guò)圓上一點(diǎn)的圓的切線方程,利用切線性質(zhì)求得斜率后易得直線方程16、8【解析】設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關(guān)系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長(zhǎng)方體性質(zhì)知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:8三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、答案不唯一,具體見(jiàn)解析【解析】選①:易得,法一:令求n,即可為何值時(shí)取最大值;法二:寫(xiě)出,利用等差數(shù)列前n項(xiàng)和的函數(shù)性質(zhì)判斷為何值時(shí)有最大值;選②:由數(shù)列前n項(xiàng)和及等差數(shù)列下標(biāo)和的性質(zhì)易得、即可確定有最大值時(shí)值;選③:由等差數(shù)列前n項(xiàng)和公式易得、即可確定有最大值時(shí)值;【詳解】選①:設(shè)數(shù)列的公差為,,,解得,即,法一:當(dāng)時(shí),有,得,∴當(dāng)時(shí),;,;時(shí),,∴或時(shí),取最大值法二:,對(duì)稱(chēng)軸,∴或時(shí),取最大值選②:由,得,由等差中項(xiàng)的性質(zhì)有,即,由,得,∴,故,∴當(dāng)時(shí),,時(shí),,故時(shí),取最大值選③:由,得,可得,由,得,可得,∴,故,∴當(dāng)時(shí),,時(shí),,故時(shí),取最大值【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)所選的條件,結(jié)合等差數(shù)列前n項(xiàng)和公式的性質(zhì)、下標(biāo)和相等的性質(zhì)等確定數(shù)列中項(xiàng)的正負(fù)性,找到界點(diǎn)n值即可.18、(1)(2)或【解析】(1)分析可知圓心在直線上,聯(lián)立兩直線方程,可得出圓心的坐標(biāo),計(jì)算出圓的半徑,即可得出圓的方程;(2)利用勾股定理求出圓心到直線的距離,然后對(duì)直線的斜率是否存在進(jìn)行分類(lèi)討論,設(shè)出直線的方程,利用點(diǎn)到直線的距離公式求出參數(shù),即可得出直線的方程.【小問(wèn)1詳解】解:過(guò)點(diǎn)且與直線垂直的直線的方程為,由題意可知,圓心即為直線與直線的交點(diǎn),聯(lián)立,解得,故圓的半徑為,因此,圓的方程為.【小問(wèn)2詳解】解:由勾股定理可知,圓心到直線的距離為.當(dāng)直線的斜率不存在時(shí),直線的方程為,圓心到直線的距離為,滿足條件;當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,即,由題意可得,解得,此時(shí),直線的方程為,即.綜上所述,直線的方程為或.19、(1);(2);(3)4.【解析】(1)根據(jù)圓圓心和半徑設(shè)圓的標(biāo)準(zhǔn)方程為,利用圓心到切線的距離等于圓的半徑即可求出a;(2)根據(jù)題意寫(xiě)出AB的方程,根據(jù)垂徑定理即可求出弦長(zhǎng);(3)根據(jù)題意求出AB經(jīng)過(guò)的定點(diǎn)Q,當(dāng)CQ垂直于AB時(shí),AB最短.【小問(wèn)1詳解】由題,設(shè)圓C的標(biāo)準(zhǔn)方程為,則,解得.故圓C方程為;【小問(wèn)2詳解】根據(jù)題意可知,直線的方程為,即,圓心C到直線的距離為,故弦長(zhǎng);【小問(wèn)3詳解】設(shè),則,又直線方程為:,故直線過(guò)定點(diǎn)Q,設(shè)圓心C到直線距離為,則,故當(dāng)最大時(shí),最短,而,故與垂直時(shí)最大,此時(shí),,∴線段長(zhǎng)度的最小值4.20、(1)3;(2)12.【解析】(1)聯(lián)立直線l與拋物線C的方程,求出A和B的橫坐標(biāo)即可得AFBF(2)設(shè)直線l方程為,與拋物線C方程聯(lián)立,求出線段AB長(zhǎng)度求其最小值即可.【小問(wèn)1詳解】設(shè),拋物線的焦點(diǎn)為,直線l經(jīng)過(guò)點(diǎn)F且斜率,直線l的方程為,將直線l方程與拋物線消去y可得,點(diǎn)A是第一象限內(nèi)的交點(diǎn),解方程得,∴.【小問(wèn)2詳解】設(shè),由題知直線l斜率不為0,故設(shè)直線l的方程為:,代入拋物線C的方程化簡(jiǎn)得,,∵>0,∴,∴,當(dāng)且僅當(dāng)m=0時(shí)取等號(hào),∴AB長(zhǎng)度最小值為12.21、(1);(2).【解析】(1)由正弦定理得到,兩邊消去公因式得到,化一即可求得角A;(2)因?yàn)?,所以,再結(jié)合余弦定理得到結(jié)果.【詳解】(1)由,得,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論