河南省信陽(yáng)市息縣一中2022-2023學(xué)年高三第十次模擬考試數(shù)學(xué)試題試卷_第1頁(yè)
河南省信陽(yáng)市息縣一中2022-2023學(xué)年高三第十次模擬考試數(shù)學(xué)試題試卷_第2頁(yè)
河南省信陽(yáng)市息縣一中2022-2023學(xué)年高三第十次模擬考試數(shù)學(xué)試題試卷_第3頁(yè)
河南省信陽(yáng)市息縣一中2022-2023學(xué)年高三第十次模擬考試數(shù)學(xué)試題試卷_第4頁(yè)
河南省信陽(yáng)市息縣一中2022-2023學(xué)年高三第十次模擬考試數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省信陽(yáng)市息縣一中2022-2023學(xué)年高三第十次模擬考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線與圓有公共點(diǎn),則的最大值為()A.4 B. C. D.2.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)3.若復(fù)數(shù)(為虛數(shù)單位),則()A. B. C. D.4.某單位去年的開(kāi)支分布的折線圖如圖1所示,在這一年中的水、電、交通開(kāi)支(單位:萬(wàn)元)如圖2所示,則該單位去年的水費(fèi)開(kāi)支占總開(kāi)支的百分比為()A. B. C. D.5.正三棱柱中,,是的中點(diǎn),則異面直線與所成的角為()A. B. C. D.6.已知正項(xiàng)等比數(shù)列滿足,若存在兩項(xiàng),,使得,則的最小值為().A.16 B. C.5 D.47.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),的最大值是()A.8 B.9 C.10 D.118.已知等比數(shù)列滿足,,等差數(shù)列中,為數(shù)列的前項(xiàng)和,則()A.36 B.72 C. D.9.已知等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A. B. C. D.10.已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為()A. B.3 C.2 D.11.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.412.已知函數(shù),其中表示不超過(guò)的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.能說(shuō)明“若對(duì)于任意的都成立,則在上是減函數(shù)”為假命題的一個(gè)函數(shù)是________.14.在的二項(xiàng)展開(kāi)式中,x的系數(shù)為_(kāi)_______.(用數(shù)值作答)15.銳角中,角,,所對(duì)的邊分別為,,,若,則的取值范圍是______.16.設(shè),分別是橢圓C:()的左、右焦點(diǎn),直線l過(guò)交橢圓C于A,B兩點(diǎn),交y軸于E點(diǎn),若滿足,且,則橢圓C的離心率為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)正項(xiàng)數(shù)列的前n項(xiàng)和Sn滿足:(1)求數(shù)列的通項(xiàng)公式;(2)令,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N*,都有Tn<.18.(12分)設(shè)函數(shù).(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實(shí)數(shù)的取值范圍;(2)若,證明:.19.(12分)已知為各項(xiàng)均為整數(shù)的等差數(shù)列,為的前項(xiàng)和,若為和的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)若,求最大的正整數(shù),使得.20.(12分)已知數(shù)列,其前項(xiàng)和為,滿足,,其中,,,.⑴若,,(),求證:數(shù)列是等比數(shù)列;⑵若數(shù)列是等比數(shù)列,求,的值;⑶若,且,求證:數(shù)列是等差數(shù)列.21.(12分)某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,規(guī)定凡在該超市購(gòu)物滿400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會(huì).摸獎(jiǎng)規(guī)則如下:獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;(2)記X為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.22.(10分)如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,且過(guò)點(diǎn).求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點(diǎn)為橢圓的上頂點(diǎn),原點(diǎn)為的垂心,求線段的長(zhǎng);②若原點(diǎn)為的重心,求原點(diǎn)到直線距離的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

根據(jù)表示圓和直線與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€與圓有公共點(diǎn),所以圓心到直線的距離,即,解得,此時(shí),因?yàn)?,在遞增,所以的最大值.故選:C【點(diǎn)睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.2、C【解析】

由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因?yàn)槭嵌x在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.3、B【解析】

根據(jù)復(fù)數(shù)的除法法則計(jì)算,由共軛復(fù)數(shù)的概念寫出.【詳解】,,故選:B【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法計(jì)算,共軛復(fù)數(shù)的概念,屬于容易題.4、A【解析】

由折線圖找出水、電、交通開(kāi)支占總開(kāi)支的比例,再計(jì)算出水費(fèi)開(kāi)支占水、電、交通開(kāi)支的比例,相乘即可求出水費(fèi)開(kāi)支占總開(kāi)支的百分比.【詳解】水費(fèi)開(kāi)支占總開(kāi)支的百分比為.故選:A【點(diǎn)睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.5、C【解析】

取中點(diǎn),連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點(diǎn),連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設(shè),則,,,則,∴.故選:C.【點(diǎn)睛】本題考查通過(guò)幾何法求異面直線的夾角,考查計(jì)算能力.6、D【解析】

由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設(shè)等比數(shù)列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故選:D.【點(diǎn)睛】本題考查利用基本不等式求式子和的最小值問(wèn)題,涉及到等比數(shù)列的知識(shí),是一道中檔題.7、B【解析】

根據(jù)題意計(jì)算,,,解不等式得到答案.【詳解】∵是以1為首項(xiàng),2為公差的等差數(shù)列,∴.∵是以1為首項(xiàng),2為公比的等比數(shù)列,∴.∴.∵,∴,解得.則當(dāng)時(shí),的最大值是9.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的靈活運(yùn)用.8、A【解析】

根據(jù)是與的等比中項(xiàng),可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點(diǎn)睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,是中檔題.9、D【解析】

根據(jù)等差數(shù)列公式直接計(jì)算得到答案.【詳解】依題意,,故,故,故,故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.10、D【解析】

本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對(duì)角線平分,可得四邊形為平行四邊形,結(jié)合,故對(duì)三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.11、B【解析】

解出,分別代入選項(xiàng)中的值進(jìn)行驗(yàn)證.【詳解】解:,.當(dāng)時(shí),,此時(shí)不成立.當(dāng)時(shí),,此時(shí)成立,符合題意.故選:B.【點(diǎn)睛】本題考查了不等式的解法,考查了集合的關(guān)系.12、C【解析】

根據(jù)表示不超過(guò)的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過(guò)的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C【點(diǎn)睛】本題考查對(duì)題干的理解,屬于函數(shù)新定義問(wèn)題,可作出圖象分析性質(zhì),屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、答案不唯一,如【解析】

根據(jù)對(duì)基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說(shuō)明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.14、-40【解析】

由題意,可先由公式得出二項(xiàng)展開(kāi)式的通項(xiàng),再令10-3r=1,得r=3即可得出x項(xiàng)的系數(shù)【詳解】的二項(xiàng)展開(kāi)式的通項(xiàng)公式為,r=0,1,2,3,4,5,令,所以的二項(xiàng)展開(kāi)式中x項(xiàng)的系數(shù)為.故答案為:-40.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,解題關(guān)鍵是靈活掌握二項(xiàng)式展開(kāi)式通項(xiàng)的公式,屬于基礎(chǔ)題.15、【解析】

由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數(shù)的性質(zhì)得出的范圍,再利用二倍角公式化簡(jiǎn),即可得出答案.【詳解】由題意得由正弦定理得化簡(jiǎn)得又為銳角三角形,則,,.故答案為【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的應(yīng)用,屬于中檔題.16、【解析】

采用數(shù)形結(jié)合,計(jì)算以及,然后根據(jù)橢圓的定義可得,并使用余弦定理以及,可得結(jié)果.【詳解】如圖由,所以由,所以又,則所以所以化簡(jiǎn)可得:則故答案為:【點(diǎn)睛】本題考查橢圓的定義以及余弦定理的使用,關(guān)鍵在于根據(jù)角度求出線段的長(zhǎng)度,考查分析能力以及計(jì)算能力,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)見(jiàn)解析【解析】

(1)因?yàn)閿?shù)列的前項(xiàng)和滿足:,所以當(dāng)時(shí),,即解得或,因?yàn)閿?shù)列都是正項(xiàng),所以,因?yàn)椋?,解得或,因?yàn)閿?shù)列都是正項(xiàng),所以,當(dāng)時(shí),有,所以,解得,當(dāng)時(shí),,符合所以數(shù)列的通項(xiàng)公式,;(2)因?yàn)?,所以,所以?shù)列的前項(xiàng)和為:,當(dāng)時(shí),有,所以,所以對(duì)于任意,數(shù)列的前項(xiàng)和.18、(1)(2)證明見(jiàn)解析【解析】

(1)求出導(dǎo)函數(shù),由在上恒成立,采用分離參數(shù)法求解;(2)觀察函數(shù),不等式湊配后知,利用時(shí)可證結(jié)論.【詳解】(1)因?yàn)樵谏蠁握{(diào)遞減,所以,即在上恒成立因?yàn)樵谏鲜菃握{(diào)遞減的,所以,所以(2)因?yàn)椋杂桑?)知,當(dāng)時(shí),在上單調(diào)遞減所以即所以.【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.解題關(guān)鍵是把不等式與函數(shù)的結(jié)論聯(lián)系起來(lái),利用函數(shù)的特例得出不等式的證明.19、(1)(2)1008【解析】

(1)用基本量求出首項(xiàng)和公差,可得通項(xiàng)公式;(2)用裂項(xiàng)相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因?yàn)閿?shù)列為各項(xiàng)均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,考查裂項(xiàng)相消法求數(shù)列的和.在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法.20、(1)見(jiàn)解析(2)(3)見(jiàn)解析【解析】試題分析:(1)(),所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數(shù)列是等差數(shù)列.試題解析:(1)證明:若,則當(dāng)(),所以,即,所以,又由,,得,,即,所以,故數(shù)列是等比數(shù)列.(2)若是等比數(shù)列,設(shè)其公比為(),當(dāng)時(shí),,即,得,①當(dāng)時(shí),,即,得,②當(dāng)時(shí),,即,得,③②①,得,③②,得,解得.代入①式,得.此時(shí)(),所以,是公比為1的等比數(shù)列,故.(3)證明:若,由,得,又,解得.由,,,,代入得,所以,,成等差數(shù)列,由,得,兩式相減得:即所以相減得:所以所以,因?yàn)?,所以,即?shù)列是等差數(shù)列.21、(1);(2)20.【解析】

(1)1名顧客摸球2次摸獎(jiǎng)停止,說(shuō)明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個(gè)值時(shí)的概率,即可求出分布列和數(shù)學(xué)期望.【詳解】(1)1名顧客摸球2次摸獎(jiǎng)停止,說(shuō)明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎(jiǎng)停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機(jī)變量X的分布列為:X01020301P數(shù)學(xué)期望.【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,屬于中檔題.22、;①;②.【解析】

根據(jù)題意列出方程組求解即可;①由原點(diǎn)為的垂心可得,軸,設(shè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論