




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年云南能源職業(yè)技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),則△ABC的面積等于()
A.
B.
C.
D.
答案:A2.方程ax2+2x+1=0至少有一個負的實根的充要條件是()
A.0<a≤1
B.a<1
C.a≤1
D.0<a≤1或a<0答案:C3.若直線x=1的傾斜角為α,則α()A.等于0B.等于π4C.等于π2D.不存在答案:由題意知直線的斜率不存在,故傾斜角α=π2,故選C.4.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=15.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點D,則圖中共有直角三角形的個數是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.6.設是定義在正整數集上的函數,且滿足:“當成立時,總可推出成立”.那么,下列命題總成立的是A.若成立,則當時,均有成立B.若成立,則當時,均有成立C.若成立,則當時,均有成立D.若成立,則當時,均有成立答案:D解析:若成立,依題意則應有當時,均有成立,故A不成立,若成立,依題意則應有當時,均有成立,故B不成立,因命題“當成立時,總可推出成立”.“當成立時,總可推出成立”.因而若成立,則當時,均有成立,故C也不成立。對于D,事實上,依題意知當時,均有成立,故D成立。7.3i(1+i)2的虛部等于______.答案:3i(1+i)2=2,所以其虛部等于0,故為08.已知函數f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),則A、B、C的大小關系為______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是減函數,∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故為:A≤B≤C.9.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長度相等的向量是相等向量;⑥平行于同一個向量的兩個向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯;②不相等的向量也可能不平行;故錯;③相等向量一定共線;正確;④共線向量不一定相等;故錯;⑤長度相等的向量方向相反時不是相等向量;故錯;⑥平行于零向量的兩個向量是不一定是共線向量,故錯.其中正確的命題是③.故為:③.10.已知向量,,則“,λ∈R”成立的必要不充分條件是()
A.
B與方向相同
C.
D.答案:D11.用秦九韶算法求多項式f(x)=8x7+5x6+3x4+2x+1,當x=2時的值.答案:根據秦九韶算法,把多項式改寫成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當x=2時,多項式的值為1397.12.在△ABC所在平面存在一點O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+
OC=AO,設OB+OC=OD∴O是AD的中點,要求面積之比的兩個三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.13.設復數z=lg(m2-2m-2)+(m2+3m+2)i,試求實數m的取值范圍,使得:
(1)z是純虛數;
(2)z是實數;
(3)z對應的點位于復平面的第二象限.答案:(1)若z=lg(m2-2m-2)+(m2+3m+2)i是純虛數,則可得lg(m2-2m-2)=0m2+3m+2≠0,即m2-2m-2=1m2+3m+2≠0,解之得m=3(舍去-1);…(3分)(2)若z=lg(m2-2m-2)+(m2+3m+2)i是實數,則可得m2+3m+2=0,解之得m=-1或m=-2…(6分)(3)∵z=lg(m2-2m-2)+(m2+3m+2)i對應的點坐標為(lg(m2-2m-2),m2+3m+2)∴若該對應點位于復平面的第二象限,則可得lg(m2-2m-2)<0m2+3m+2>0,即0<m2-2m-2<1m2+3m+2>0,解之得-1<m<1-3或1+3<m<3.…(10分)14.若F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個焦點,M是橢圓上的動點,∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.15.已知直線l過點P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,則三角形OAB面積的最小值為______.答案:設A(a,0)、B(0,b),a>0,b>0,AB方程為xa+
yb=1,點P(2,1)代入得2a+1b=1≥22ab,∴ab≥8
(當且僅當a=4,b=2時,等號成立),故三角形OAB面積S=12
ab≥4,故為4.16.關于如圖所示幾何體的正確說法為______.
①這是一個六面體;
②這是一個四棱臺;
③這是一個四棱柱;
④這是一個四棱柱和三棱柱的組合體;
⑤這是一個被截去一個三棱柱的四棱柱.答案:①因為有六個面,屬于六面體的范圍,②這是一個很明顯的四棱柱,因為側棱的延長線不能交與一點,所以不正確.③如果把幾何體放倒就會發(fā)現是一個四棱柱,④可以有四棱柱和三棱柱組成,⑤和④的想法一樣,割補方法就可以得到.故為:①③④⑤.17.已知定直線l及定點A(A不在l上),n為過點A且垂直于l的直線,設N為l上任意一點,線段AN的垂直平分線交n于B,點B關于AN的對稱點為P,求證:點P的軌跡為拋物線.答案:證明:如圖所示,建立平面直角坐標系,并且連結PA,PN,NB.由題意知PB垂直平分AN,且點B關于AN的對稱點為P,∴AN也垂直平分PB.∴四邊形PABN為菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故點P符合拋物線上點的條件:到定點A的距離和到定直線l的距離相等,∴點P的軌跡為拋物線.18.根據給出的空間幾何體的三視圖,用斜二側畫法畫出它的直觀圖.答案:畫法:(1)畫軸如下圖,畫x軸、y軸、z軸,三軸相交于點O,使∠xOy=45°,∠xOz=90°.(2)畫圓臺的兩底面畫出底面⊙O假設交x軸于A、B兩點,在z軸上截取O′,使OO′等于三視圖中相應高度,過O′作Ox的平行線O′x′,Oy的平行線O′y′利用O′x′與O′y′畫出底面⊙O′,設⊙O′交x′軸于A′、B′兩點.(3)成圖連接A′A、B′B,去掉輔助線,將被遮擋的部分要改為虛線,即得到給出三視圖所表示的直觀圖.19.已知雙曲線x2-y22=1,經過點M(1,1)能否作一條直線l,使直線l與雙曲線交于A、B,且M是線段AB的中點,若存在這樣的直線l,求出它的方程;若不存在,說明理由.答案:設過點M(1,1)的直線方程為y=k(x-1)+1或x=1(1)當k存在時有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)當直線與雙曲線相交于兩個不同點,則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的兩個不同的根是兩交點A、B的橫坐標∴x1+x2=2(k-k2)2-k2
又M(1,1)為線段AB的中點∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此當k=2時,方程(1)無實數解故過點m(1,1)與雙曲線交于兩點A、B且M為線段AB中點的直線不存在.(2)當x=1時,直線經過點M但不滿足條件,綜上,符合條件的直線l不存在20.已知D是△ABC所在平面內一點,,則()
A.
B.
C.=
D.答案:A21.圓x2+y2-4x=0在點P(1,)處的切線方程為()
A.x+y-2=0
B.x+y-4=0
C.x-y+4=0
D.x-y+2=0答案:D22.如圖是將二進制數11111(2)化為十進制數的一個程序框圖,判斷框內應填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進制數11111(2)化為十進制數,11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿足條件,執(zhí)行S=1+2×15=31,此時31是要輸出的S值,說明i不滿足判斷框中的條件,由此可知,判斷框中的條件應為i>4.故選D.23.點B是點A(1,2,3)在坐標平面yOz內的正投影,則|OB|等于()
A.
B.
C.
D.答案:B24.若a>0,b>0,2a+3b=1,則ab的最大值為______.答案:∵a>0,b>0,2a+3b=1∴2a+3b=1≥26ab∴ab≤124故為12425.已知兩曲線參數方程分別為x=5cosθy=sinθ(0≤θ<π)和x=54t2y=t(t∈R),它們的交點坐標為______.答案:曲線參數方程x=5cosθy=sinθ(0≤θ<π)的直角坐標方程為:x25+y2=1;曲線x=54t2y=t(t∈R)的普通方程為:y2=45x;解方程組:x25+y2=1y2=45x得:x=1y=255∴它們的交點坐標為(1,255).故為:(1,255).26.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數列”,如a=b=0,c=1時,盡管有“b2=ac”,但0,0,1不能構成等比數列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.27.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()
A.是圓心
B.在圓上
C.在圓內
D.在圓外答案:C28.已知a,b是非零向量,且a,b夾角為π3,則向量p=a丨a丨+b丨b丨的模為______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|
|b|cosπ3=12|a|
|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故為3.29.雙曲線(n>1)的兩焦點為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P
F1F2的面積為()
A.
B.1
C.2
D.4答案:B30.寫出1×2×3×4×5×6的一個算法.答案:按照逐一相乘的程序進行第一步:計算1×2,得到2;第二步:將第一步的運算結果2與3相乘,得到6;第三步:將第二步的運算結果6與4相乘,得到24;第四步:將第三步的運算結果24與5相乘,得到120;第五步:將第四的運算結果120與6相乘,得到720;第六步:輸出結果.31.某校為了研究學生的性別和對待某一活動的態(tài)度(支持和不支持兩種態(tài)度)的關系,運用2×2列聯表進行獨立性檢驗,經計算K2=7.069,則所得到的統(tǒng)計學結論是:有()的把握認為“學生性別與支持該活動有關系”.
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
A.0.1%
B.1%
C.99%
D.99.9%答案:C32.已知m2+n2=1,a2+b2=2,則am+bn的最大值是()
A.1
B.
C.
D.以上都不對答案:C33.下列四個函數中,與y=x表示同一函數的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項A中的函數的定義域與已知函數不同,故排除選項A.選項B中的函數與已知函數具有相同的定義域、值域和對應關系,故是同一個函數,故選項B滿足條件.選項C中的函數與已知函數的值域不同,故不是同一個函數,故排除選項C.選項D中的函數與與已知函數的定義域不同,故不是同一個函數,故排除選項D,故選B.34.已知點A(1,-2,0)和向量a=(-3,4,12),若AB=2a,則點B的坐標為______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵點A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故為:(-5,6,24)35.拋擲甲、乙兩骰子,記事件A:“甲骰子的點數為奇數”;事件B:“乙骰子的點數為偶數”,則P(B|A)的值等于()
A.
B.
C.
D.答案:B36.過點(2,4)作直線與拋物線y2=8x只有一個公共點,這樣的直線有()
A.1條
B.2條
C.3條
D.4條答案:B37.若以連續(xù)擲兩次骰子分別得到的點數m、n作為點P的坐標,則點P落在圓x2+y2=16內的概率是______.答案:由題意知,本題是一個古典概型,試驗發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點數m、n作為點P的坐標,共有6×6=36種結果,而滿足條件的事件是點P落在圓x2+y2=16內,列舉出落在圓內的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結果,根據古典概型概率公式得到P=836=29,故為:2938.已知a>0,b>0且a+b>2,求證:1+ba,1+ab中至少有一個小于2.答案:證明:假設1+ba,1+ab都不小于2,則1+ba≥2,1+ab≥2(6分)因為a>0,b>0,所以1+b≥2a,1+a≥2b,1+1+a+b≥2(a+b)即2≥a+b,這與已知a+b>2相矛盾,故假設不成立(12分)綜上1+ba,1+ab中至少有一個小于2.(14分)39.三個數a=60.5,b=0.56,c=log0.56的大小順序為______.(按大到小順序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故為a>b>c.40.下列隨機變量ξ服從二項分布的是()
①隨機變量ξ表示重復拋擲一枚骰子n次中出現點數是3的倍數的次數;
②某射手擊中目標的概率為0.9,從開始射擊到擊中目標所需的射擊次數ξ;
③有一批產品共有N件,其中M件為次品,采用有放回抽取方法,ξ表示n次抽取中出現次品的件數(M<N);
④有一批產品共有N件,其中M件為次品,采用不放回抽取方法,ξ表示n次抽取中出現次品的件數(M<N).
A.②③
B.①④
C.③④
D.①③答案:D41.已知矩陣M=2a21,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0)
(1)求實數a的值;
(2)求矩陣M的特征值及其對應的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當λ=-1時,(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個特征向量為1-1;當λ=4時,(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個特征向量為32.42.設P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點P的坐標
()
A.(-8,15)
B.(0,3)
C.(-,)
D.(1,)答案:A43.圓x2+y2=1在矩陣A={}對應的變換下,得到的曲線的方程是()
A.=1
B.=1
C.=1
D.=1答案:C44.設A(3,4),在x軸上有一點P(x,0),使得|PA|=5,則x等于()
A.0
B.6
C.0或6
D.0或-6答案:C45.袋中有5個小球(3白2黑),現從袋中每次取一個球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是()
A.
B.
C.
D.答案:C46.在語句PRINT
3,3+2的結果是()
A.3,3+2
B.3,5
C.3,5
D.3,2+3答案:B47.數集{1,x,2x}中的元素x應滿足的條件是______.答案:根據集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.48.若A∩B=A∪B,則A______B.答案:設有集合W=A∪B=B∩C,根據并集的性質,W=A∪B?A?W,B?W,根據交集的性質,W=A∩B?W?A,W?B由集合子集的性質,A=B=W,故為:=.49.一個袋子里裝有大小相同的3個紅球和2個黃球,從中同時取出2個球,則其中含紅球個數的數學期望是
______.答案:設含紅球個數為ξ,ξ的可能取值是0、1、2,當ξ=0時,表示從中取出2個球,其中不含紅球,當ξ=1時,表示從中取出2個球,其中1個紅球,1個黃球,當ξ=2時,表示從中取出2個球,其中2個紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.50.設F1,F2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數列,則|AB|的長為______.答案:∵|AF2|,|AB|,|BF2|成等差數列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:43第2卷一.綜合題(共50題)1.隋機變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C2.在△ABC中,DE∥BC,DE將△ABC分成面積相等的兩部分,那么DE:BC=()
A.1:2
B.1:3
C.
D.1:1答案:C3.已知復數z=2+i,則z2對應的點在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,則z2=(2+i)2=22+4i+i2=3+4i.所以,復數z2的實部等于3,虛部等于4.所以z2對應的點在第Ⅰ象限.故選A.4.在復平面內,復數z=sin2+icos2對應的點位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2對應的點在第四象限,故選D.5.
選修1:幾何證明選講
如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:
(1)l是⊙O的切線;
(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.6.用反證法證明“如果a<b,那么“”,假設的內容應是()
A.
B.
C.且
D.或
答案:D7.已知函數f(x)=x21+x2.
(1)求f(2)與f(12),f(3)與f(13);
(2)由(1)中求得結果,你能發(fā)現f(x)與f(1x)有什么關系?并證明你的結論;
(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分證:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分8.已知橢圓C的中心在原點,焦點F1,F2在軸上,離心率e=22,且經過點M(0,2),求橢圓c的方程答案:若焦點在x軸很明顯,過點M(0,2)點M即橢圓的上端點,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.9.橢圓x=3cosθy=4sinθ的離心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其離心率e=ca=74.故為:74.10.設A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.
(1)求a的值及集合A、B;
(2)設全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集為:,{﹣5},{},{﹣5,}.11.已知四邊形ABCD中,AB=12DC,且|AD|=|BC|,則四邊形ABCD的形狀是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即線段AB平行于線段CD,且線段AB長度是線段CD長度的一半∴四邊形ABCD為以AB為上底、CD為下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的兩腰相等,因此四邊形ABCD是等腰梯形.故為:等腰梯形12.已知、分別是的外接圓和內切圓;證明:過上的任意一點,都可作一個三角形,使得、分別是的外接圓和內切圓.答案:略解析:證:如圖,設,分別是的外接圓和內切圓半徑,延長交于,則,,延長交于;則,即;過分別作的切線,在上,連,則平分,只要證,也與相切;設,則是的中點,連,則,,,所以,由于在角的平分線上,因此點是的內心,(這是由于,,而,所以,點是的內心).即弦與相切.13.如圖程序輸出的結果是()
A.3,4
B.4,4
C.3,3
D.4,3
答案:B14.閱讀程序框圖,運行相應的程序,則輸出i的值為()A.3B.4C.5D.6答案:該程序框圖是循環(huán)結構經第一次循環(huán)得到i=1,a=2;經第二次循環(huán)得到i=2,a=5;經第三次循環(huán)得到i=3,a=16;經第四次循環(huán)得到i=4,a=65滿足判斷框的條件,執(zhí)行是,輸出4故選B15.下列說法中正確的是()A.一個命題的逆命題為真,則它的逆否命題一定為真B.“a>b”與“a+c>b+c”不等價C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”D.一個命題的否命題為真,則它的逆命題一定為真答案:A、逆命題與逆否命題之間不存在必然的真假關系,故A錯誤;B、由不等式的性質可知,“a>b”與“a+c>b+c”等價,故B錯誤;C、“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯誤;D、否命題和逆命題是互為逆否命題,有著一致的真假性,故D正確;故選D16.若數據x1,x2,x3…xn的平均數.x=5,方差σ2=2,則數據3x1+1,3x2+1,3x3+1…,3xn+1的方差為______.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.17.方程x2+y2=1(xy<0)的曲線形狀是()
A.
B.
C.
D.
答案:C18.下面為一個求20個數的平均數的程序,在橫線上應填充的語句為()
A.i>20
B.i<20
C.i>=20
D.i<=20
答案:A19.過直線x+y-22=0上點P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點P的坐標是______.答案:根據題意畫出相應的圖形,如圖所示:直線PA和PB為過點P的兩條切線,且∠APB=60°,設P的坐標為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯立①②解得:a=b=2,則P的坐標為(2,2).故為:(2,2)20.三個數a=60.5,b=0.56,c=log0.56的大小順序為______.(按大到小順序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故為a>b>c.21.某校有學生1
200人,為了調查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.22.在極坐標系中,點A(2,π2)關于直線l:ρcosθ=1的對稱點的一個極坐標為______.答案:在直角坐標系中,A(0,2),直線l:x=1,A關于直線l的對稱點B(2,2).由于|OB|=22,OB直線的傾斜角等于π4,且點B在第一象限,故B的極坐標為(22,π4),故為
(22,π4).23.半徑為1、2、3的三個圓兩兩外切.證明:以這三個圓的圓心為頂點的三角形是直角三角形.
答案:證明:設⊙O1、⊙O2、⊙O3的半徑分別為1、2、3.因這三個圓兩兩外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,則有O1O22+O1O32=32+42=52=O2O32根據勾股定理的逆定理,得到△O1O2O3為直角三角形.24.設矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-1225.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等價于或解得或即故不等式的解集為。26.設a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為1027.在直角坐標系內,坐標軸上的點構成的集合可表示為()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同時為零}答案:在x軸上的點(x,y),必有y=0;在y軸上的點(x,y),必有x=0,∴xy=0.∴直角坐標系中,x軸上的點的集合{(x,y)|y=0},直角坐標系中,y軸上的點的集合{(x,y)|x=0},∴坐標軸上的點的集合可表示為{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故選C.28.有一批機器,編號為1,2,3,…,112,為調查機器的質量問題,打算抽取10臺,問此樣本若采用簡單的隨機抽樣方法將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學生都編上號001,002,112…用抽簽法做112個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取10次,就得到一個容量為10的樣本.29.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),則實數λ的值是
______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b?(a+λb)=0,即(1,1)?(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-330.用反證法證明“3是無理數”時,第一步應假設“______.”答案:反證法肯定題設而否定結論,從而得出矛盾,題設“3是無理數”,那么假設為:3是有理數.故為3是有理數.31.擲一顆均勻的骰子,若隨機事件A表示“出現奇數點”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結果只有2種:出現奇數點、出現偶數點.若隨機事件A表示“出現奇數點”,則A的對立事件B表示:“出現偶數點”,故為出現偶數點.32.條件語句的一般形式如圖所示,其中B表示的是()
A.條件
B.條件語句
C.滿足條件時執(zhí)行的內容
D.不滿足條件時執(zhí)行的內容
答案:C33.有一矩形紙片ABCD,按圖所示方法進行任意折疊,使每次折疊后點B都落在邊AD上,將B的落點記為B′,其中EF為折痕,點F也可落在邊CD上,過B′作B′H∥CD交EF于點H,則點H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點H到定點B的距離以及到定直線AD的距離相等,根據拋物線的定義可知:點H的軌跡為:拋物線,(拋物線的一部分)故選D.34.圓x2+y2=1在矩陣A={}對應的變換下,得到的曲線的方程是()
A.=1
B.=1
C.=1
D.=1答案:C35.若三角形的內切圓半徑為r,三邊的長分別為a,b,c,則三角形的面積S=12r(a+b+c),根據類比思想,若四面體的內切球半徑為R,四個面的面積分別為S1、S2、S3、S4,則此四面體的體積V=______.答案:設四面體的內切球的球心為O,則球心O到四個面的距離都是R,所以四面體的體積等于以O為頂點,分別以四個面為底面的4個三棱錐體積的和.故為:13R(S1+S2+S3+S4).36.有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時針旋轉45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1;
(Ⅱ)請寫出△ABC在矩陣M-1對應的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標系與參數方程
過P(2,0)作傾斜角為α的直線l與曲線E:x=cosθy=22sinθ(θ為參數)交于A,B兩點.
(Ⅰ)求曲線E的普通方程及l(fā)的參數方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5
不等式證明選講)
已知正實數a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:a+b+c≤3;
(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)
cos(-45°)=2222-2222∵矩陣M表示變換“順時針旋轉45°”∴矩陣M-1表示變換“逆時針旋轉45°”∴M-1=cos45°-sin45°sin45°
cos45°=22-2222
22(Ⅱ)三角形ABC的面積S△ABC=12×(3-1)×2=2,由于△ABC在旋轉變換下所得△A1B1C1與△ABC全等,故三角形的面積不變,即S△A1B1C1=2.(2)(Ⅰ)曲線E的普通方程為x2+2y2=1L的參數方程為x=2+tcosαy=tsinα(t為參數)
(Ⅱ)將L的參數方程代入由線E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)證明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3當且僅當a=b=c=1,取等號.(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,則2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,當且僅當a=b=1時,c有最大值1.37.設a=log32,b=log23,c=,則()
A.c<b<a
B.a<c<b
C.c<a<b
D.b<c<a答案:C38.設,是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實數m為()
A.-2
B.2
C.-
D.不存在答案:A39.假設兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設⊙O1及⊙O2為互相外切的兩個圓,其一外公切線為A1A2,切點為A1及A2令點O為連心線O1O2的中點,過O作OA⊥A1A2,由直角梯形的中位線性質得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2為直徑,即以O為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.40.設F1,F2分別是橢圓x24+y2=1的左、右焦點,P是第一象限內該橢圓上的一點,且P、F1、F2三點構成一直角三角形,則點P的縱坐標為______.答案:由題意,P是第一象限內該橢圓上的一點,且P、F1、F2三點構成一直角三角形,故可分為兩類:①當∠P為直角時,設P的縱坐標為y,則F1,F2分別是橢圓x24+y2=1的左、右焦點∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當∠PF2F1為直角時,P的橫坐標為3設P的縱坐標為y(y>0),則(3)24+y2=1,∴y=12故為:33
或1241.如圖過拋物線y2=2px(p>0)的焦點F的直線依次交拋物線及準線于點A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為()
A.y2=x
B.y2=9x
C.y2=x
D.y2=3x
答案:D42.設集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:B43.正十邊形的一個內角是多少度?答案:由多邊形內角和公式180°(n-2),∴每一個內角的度數是180°(n-2)n當n=10時.得到一個內角為180°(10-2)10=144°44.某學校準備調查高三年級學生完成課后作業(yè)所需時間,采取了兩種抽樣調查的方式:第一種由學生會的同學隨機對24名同學進行調查;第二種由教務處對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調查,則這兩種抽樣方式依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:學生會的同學隨機對24名同學進行調查,是簡單隨機抽樣,對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調查,是系統(tǒng)抽樣,故選D45.在△ABC所在平面存在一點O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+
OC=AO,設OB+OC=OD∴O是AD的中點,要求面積之比的兩個三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.46.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個命題中正確的是()
A.若α1<α2,則兩直線斜率k1<k2
B.若α1=α2,則兩直線斜率k1=k2
C.若兩直線斜率k1<k2,則α1<α2
D.若兩直線斜率k1=k2,則α1=α2答案:D47.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的(
)
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C48.下列給出的輸入語句、輸出語句和賦值語句
(1)輸出語句INPUT
a;b;c
(2)輸入語句INPUT
x=3
(3)賦值語句3=B
(4)賦值語句A=B=2
則其中正確的個數是()
A.0個
B.1個
C.2個
D.3個答案:A49.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為______.答案:由題意可得,當焦點在x軸上時,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當焦點在y軸上時,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53
或54.50.P是以F1,F2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()
A.橢圓
B.圓
C.雙曲線
D.雙曲線的一支答案:B第3卷一.綜合題(共50題)1.化簡的結果是()
A.a2
B.a
C.a
D.a答案:C2.
(理)
在長方體ABCD-A1B1C1D1中,以為基底表示,其結果是()
A.
B.
C.
D.答案:C3.若直線x=1的傾斜角為α,則α等于()A.0°B.45°C.90°D.不存在答案:直線x=1與x軸垂直,故直線的傾斜角是90°,故選C.4.(坐標系與參數方程選做題)過點(2,π3)且平行于極軸的直線的極坐標方程為______.答案:法一:先將極坐標化成直角坐標表示,(2,π3)化為(1,3),過(1,3)且平行于x軸的直線為y=3,再化成極坐標表示,即ρsinθ=3.法二:在極坐標系中,直接構造直角三角形由其邊角關系得方程ρsinθ=3.設A(ρ,θ)是直線上的任一點,A到極軸的距離AH=2sinπ3=3,直接構造直角三角形由其邊角關系得方程ρsinθ=3.故為:ρsinθ=35.下列隨機變量ξ服從二項分布的是()
①隨機變量ξ表示重復拋擲一枚骰子n次中出現點數是3的倍數的次數;
②某射手擊中目標的概率為0.9,從開始射擊到擊中目標所需的射擊次數ξ;
③有一批產品共有N件,其中M件為次品,采用有放回抽取方法,ξ表示n次抽取中出現次品的件數(M<N);
④有一批產品共有N件,其中M件為次品,采用不放回抽取方法,ξ表示n次抽取中出現次品的件數(M<N).
A.②③
B.①④
C.③④
D.①③答案:D6.一個底面是正三角形的三棱柱的側視圖如圖所示,則該幾何體的側面積等于()A.3B.6C.23D.2答案:由正視圖知:三棱柱是以底面邊長為2,高為1的正三棱柱,側面積為3×2×1=6,故為:B.7.設F1,F2分別是橢圓x24+y2=1的左、右焦點,P是第一象限內該橢圓上的一點,且P、F1、F2三點構成一直角三角形,則點P的縱坐標為______.答案:由題意,P是第一象限內該橢圓上的一點,且P、F1、F2三點構成一直角三角形,故可分為兩類:①當∠P為直角時,設P的縱坐標為y,則F1,F2分別是橢圓x24+y2=1的左、右焦點∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當∠PF2F1為直角時,P的橫坐標為3設P的縱坐標為y(y>0),則(3)24+y2=1,∴y=12故為:33
或128.點P(x0,y0)在圓x2+y2=r2內,則直線x0x+y0y=r2和已知圓的公共點的個數為(
)
A.0
B.1
C.2
D.不能確定答案:A9.設A、B為兩個事件,若事件A和B同時發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為______.答案:根據題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3510.若一次函數y=mx+b在(-∞,+∞)上是增函數,則有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函數y=mx+b在(-∞,+∞)上是增函數,∴一次項系數m>0,故選C.11.設隨機變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()
A.
B.
C.
D.答案:C12.直線2x+y-3=0與直線3x+9y+1=0的夾角是()
A.
B.arctan2
C.
D.答案:C13.已知直線l:ax+by=1(ab>0)經過點P(1,4),則l在兩坐標軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經過點P(1,4),∴a+4b=1,故a、b都是正數.故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當且僅當4ba=ab時,取等號,故為9.14.函數y=2x的值域為______.答案:因為:x≥0,所以:y=2x≥20=1.∴函數y=2x的值域為:[1,+∞).故為:[1,+∞).15.從裝有2個紅球和2個白球的口袋內任取2個球,那么互斥而不對立的兩個事件是()
A.至少有1個白球;都是白球
B.至少有1個白球;至少有1個紅球
C.恰有1個白球;恰有2個白球
D.至少有一個白球;都是紅球答案:C16.中心在坐標原點,離心率為的雙曲線的焦點在y軸上,則它的漸近線方程為()
A.
B.
C.
D.答案:D17.已知關于x的方程2kx2-2x-3k-2=0的兩實根一個小于1,另一個大于1,求實數k的取值范圍。答案:解:令,為使方程f(x)=0的兩實根一個小于1,另一個大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.18.直線(t為參數)的傾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D19.(選做題)某制藥企業(yè)為了對某種藥用液體進行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分數法進行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數為(
)。答案:720.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α21.直線y=2x與直線x+y=3的交點坐標是
______.答案:聯立兩直線方程得y=2xx+y=3,解得x=1y=2所以直線y=2x與直線x+y=3的交點坐標是(1,2)故為(1,2).22.一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側棱長相等,這個三棱錐的底面邊長與各側棱長也都相等.設四棱錐、三棱錐、三棱柱的高分別為h1,h2,h,則h1:h2:h3=()
A.:1:1
B.:2:2
C.:2:
D.:2:答案:B23.已知P是以F1,F2為焦點的橢圓(a>b>0)上的一點,若PF1⊥PF2,tan∠PF1F2=,則此橢圓的離心率為()
A.
B.
C.
D.答案:D24.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1).∴=(0,2,1),=(1,-2,0).設平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.25.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長為()
A.4
B.2
C.4
D.3答案:A26.已知點G是△ABC的重心,點P是△GBC內一點,若,則λ+μ的取值范圍是()
A.
B.
C.
D.(1,2)答案:B27.已知點A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為______.答案:AB=(-1,2,0),AC=(-1,0,3).設平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|
|n|=231×22+1+(23)2=27.故為27.28.要使直線y=kx+1(k∈R)與焦點在x軸上的橢圓x27+y2a=1總有公共點,實數a的取值范圍是______.答案:要使方程x27+y2a=1表示焦點在x軸上的橢圓,需a<7,由直線y=kx+1(k∈R)恒過定點(0,1),所以要使直線y=kx+1(k∈R)與橢圓x27+y2a=1總有公共點,則(0,1)應在橢圓上或其內部,即a>1,所以實數a的取值范圍是[1,7).故為[1,7).29.設全集U={1,2,3,4,5},A∩C∪B={1,2},則集合C∪A∩B的所有子集個數最多為()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴當集合C∪A∩B的所有子集個數最多時,集合B中最多有三個元素:3,4,5,且A∩B=?,作出文氏圖∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集個數為:23=8.故選D.30.圓O1和圓O2的極坐標方程分別為ρ=4cosθ,ρ=-4sinθ.
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經過圓O1,圓O2交點的直線的直角坐標方程.答案:以有點為原點,極軸為x軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.所以x2+y2=4x.即x2+y2-4x=0為圓O1的直角坐標方程.….(3分)同理x2+y2+4y=0為圓O2的直角坐標方程.….(6分)(2)由x2+y2-4x=0x2+y2+4y=0解得x1=0y1=0x2=2y2=-2.即圓O1,圓O2交于點(0,0)和(2,-2).過交點的直線的直角坐標方程為y=-x.…(10分)31.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D32.在△ABC中,=,=,且=2,則等于()
A.+
B.+
C.+
D.+答案:A33.圓的極坐標方程是ρ=2cosθ+2sinθ,則其圓心的極坐標是()
A.(2,)
B.(2,)
C.(1,)
D.(1,)答案:A34.已知平面直角坐標系內三點O(0,0),A(1,1),B(4,2)
(Ⅰ)求過O,A,B三點的圓的方程,并指出圓心坐標與圓的半徑.
(Ⅱ)求過點C(-1,0)與條件(Ⅰ)的圓相切的直線方程.答案:(Ⅰ)∵O(0,0),A(1,1),B(4,2),∴線段OA中點坐標為(12,12),線段OB的中點坐標為(2,1),kOA=1,kOB=12,∴線段OA垂直平分線的方程為y-12=-(x-12),線段OB垂直平分線的方程為y-1=12(x-2),聯立兩方程解得:x=4y=-3,即圓心(4,-3),半徑r=42+(-3)2=5,則所求圓的方程為x2+y2-8x+6y=0,圓心是(4,-3)、半徑r=5;(Ⅱ)分兩種情況考慮:當切線方程斜率不存在時,直線x=-1滿足題意;當斜率存在時,設為k,切線方程為y=k(x+1),即kx-y+k=0,∴圓心到切線的距離d=r,即|5k+3|k2+1=5,解得:k=815,此時切線方程為y=815(x+1),綜上,所求切線方程為x=-1或y=815(x+1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽機電職業(yè)技術學院《廣告攝影》2024-2025學年第一學期期末試卷
- 企業(yè)員工工作日志標準模板及填寫指南
- 洛陽理工學院《工業(yè)設計前沿信息》2024-2025學年第一學期期末試卷
- 揚州市職業(yè)大學《視覺傳達設計創(chuàng)意思維》2024-2025學年第一學期期末試卷
- 戶外網絡電氣施工方案與組織設計
- 長安大學《植物組織培養(yǎng)》2024-2025學年第一學期期末試卷
- 遼源職業(yè)技術學院《建筑空間設計基礎制圖》2024-2025學年第一學期期末試卷
- 黑龍江工業(yè)學院《設計及應用》2024-2025學年第一學期期末試卷
- 貴州城市職業(yè)學院《PC開發(fā)技術》2024-2025學年第一學期期末試卷
- 四川文軒職業(yè)學院《全球營銷》2024-2025學年第一學期期末試卷
- 廣東省惠州市《綜合知識和能力素質》公務員考試真題含答案
- GB/T 9797-2022金屬及其他無機覆蓋層鎳、鎳+鉻、銅+鎳和銅+鎳+鉻電鍍層
- GB/T 33365-2016鋼筋混凝土用鋼筋焊接網試驗方法
- GB/T 12750-2006半導體器件集成電路第11部分:半導體集成電路分規(guī)范(不包括混合電路)
- 《乒乓裁判規(guī)則規(guī)程》考試題庫(附答案)
- 依托自主化裝備建設分布式能源三聯供項目
- 老年肌肉衰減綜合征(肌少癥)課件
- 山西省持有《危險廢物經營許可證》單位一覽表
- PCB全制程培訓教材
- 煙草配送車輛GPS管理方案
- 中圖法分類號與中圖分類法查詢
評論
0/150
提交評論