2023年麗水職業(yè)技術學院高職單招(數學)試題庫含答案解析_第1頁
2023年麗水職業(yè)技術學院高職單招(數學)試題庫含答案解析_第2頁
2023年麗水職業(yè)技術學院高職單招(數學)試題庫含答案解析_第3頁
2023年麗水職業(yè)技術學院高職單招(數學)試題庫含答案解析_第4頁
2023年麗水職業(yè)技術學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年麗水職業(yè)技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.設雙曲線的漸近線為:y=±32x,則雙曲線的離心率為______.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.2.設直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()

A.

B.

C.

D.答案:C3.雙曲線的中心是原點O,它的虛軸長為26,右焦點為F(c,0)(c>0),直線l:x=a2c與x軸交于點A,且|OF|=3|OA|.過點F的直線與雙曲線交于P、Q兩點.

(Ⅰ)求雙曲線的方程;

(Ⅱ)若AP?AQ=0,求直線PQ的方程.答案:解.(Ⅰ)由題意,設曲線的方程為x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以雙曲線的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(xiàn)(3,0),當直線PQ與x軸垂直時,PQ方程為x=3.此時,AP?AQ≠0,應舍去.當直線PQ與x軸不垂直時,設直線PQ的方程為y=k(x-3).由方程組x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于過點F的直線與雙曲線交于P、Q兩點,則k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)設P(x1,y1),Q(x2,y2),則x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直線PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP?AQ=0,∴(x1-1,y1)?(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22滿足(*)∴直線PQ的方程為x-2y-3=0或x+2y-3=04.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2

(1)求a?b;

(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?

(-3e1+2e2)=

-6e12+e1

?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727

×7=-12,又0<<a,b><π,所以<a,b>=2π3.5.如圖,四條直線互相平行,且相鄰兩條平行線的距離均為h,一直正方形的4個頂點分別在四條直線上,則正方形的面積為()

A.4h2

B.5h2

C.4h2

D.5h2

答案:B6.曲線2y2+3x+3=0與曲線x2+y2-4x-5=0的公共點的個數是()

A.4

B.3

C.2

D.1答案:D7.在航天員進行的一項太空實驗中,要先后實施6個程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實施時必須相鄰,請問實驗順序的編排方法共有()

A.24種

B.48種

C.96種

D.144種答案:C8.已知圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.

(1)將極坐標方程化為普通方程;

(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.答案:(1)ρ2-42ρcos(θ-π4)+6=0

ρ2-42(22ρcosθ+22ρsinθ

),即x2+y2-4x-4y+6=0.(2)圓的參數方程為x=

2

+2cosαy=

2

+2sinα,∴x+y=4+2(sinα+cosα)=4+2sin(α+π4).由于-1≤sin(α+π4)≤1,∴2≤x+y≤6,故x+y的最大值為6,最小值等于2.9.設圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點P的坐標為(2,1),那么()

A.點P在直線L上,但不在圓M上

B.點P在圓M上,但不在直線L上

C.點P既在圓M上,又在直線L上

D.點P既不在直線L上,也不在圓M上答案:C10.對于函數f(x),在使f(x)≤M成立的所有常數M中,我們把M的最小值稱為函數f(x)的“上確界”則函數f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因為f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因為x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數M中,M的最小值為2.故選C.11.已知正方形ABCD的邊長為1,=,=,=,則|++|等于(

A.0

B.2

C.

D.3答案:B12.求兩條平行直線3x-4y-11=0與6x-8y+4=0的距離是()

A.3

B.

C.

D.4答案:B13.已知A(k,12,1),B(4,5,1),C(-k,10,1),且A、B、C三點共線,則k=______.答案:∵AB=(4-k,-7,0),BC=(-k-4,5,0),且A、B、C三點共線,∴存在實數λ滿足AB=λBC,即4-k=λ(-k-4)-7=5λ0=0,解得k=-23.故為-23.14.下列各組向量中不平行的是()A.a=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:選項A中,b=-2a?a∥b;選項B中有:d=-3c?d∥c,選項C中零向量與任意向量平行,選項D,事實上不存在任何一個實數λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故應選:D15.某種產品的廣告費支出x與銷售額y(單位:萬元)之間有如下一組數據:

x24568y3040605070若y與x之間的關系符合回歸直線方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.

∵y關于x的線性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.16.在極坐標系中,過點p(3,)且垂直于極軸的直線方程為()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A17.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A18.(不等式選講)

已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:

,

相加得:左3……………(10分)19.如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B,C兩點,圓心O在∠PAC的內部,點M是BC的中點.

(Ⅰ)證明A,P,O,M四點共圓;

(Ⅱ)求∠OAM+∠APM的大?。鸢福鹤C明:(Ⅰ)連接OP,OM.因為AP與⊙O相切于點P,所以OP⊥AP.因為M是⊙O的弦BC的中點,所以OM⊥BC.于是∠OPA+∠OMA=180°.由圓心O在∠PAC的內部,可知四邊形M的對角互補,所以A,P,O,M四點共圓.(Ⅱ)由(Ⅰ)得A,P,O,M四點共圓,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圓心O在∠PAC的內部,可知∠OPM+∠APM=90°.又∵A,P,O,M四點共圓∴∠OPM=∠OAM所以∠OAM+∠APM=90°.20.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點,N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.21.直線kx-y=k-1與直線ky=x+2k的交點在第二象限內,則k的取值范圍是

______.答案:聯(lián)立兩直線方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,當k+1≠0即k≠-1時,解得x=kk-1,把x=kk-1代入③得到y(tǒng)=2k-1k-1,所以交點坐標為(kk-1,2k-1k-1)因為直線kx-y=k-1與直線ky=x+2k的交點在第二象限內,得kk-1<02k-1k-1>

0解得0<k<1,k>1或k<12,所以不等式組的解集為0<k<12則k的取值范圍是0<k<12故為:0<k<1222.已知曲線C的參數方程是(θ為參數),曲線C不經過第二象限,則實數a的取值范圍是()

A.a≥2

B.a>3

C.a≥1

D.a<0答案:A23.已知平行四邊形的三個頂點A(-2,1),B(-1,3),C(3,4),求第四個頂點D的坐標.答案:若構成的平行四邊形為ABCD1,即AC為一條對角線,設D1(x,y),則由AC中點也是BD1中點,可得

-2+32=x-121+42=y+32,解得

x=2y=2,∴D1(2,2).同理可得,若構成以AB為對角線的平行四邊形ACBD2,則D2(-6,0);以BC為對角線的平行四邊形ACD3B,則D3(4,6),∴第四個頂點D的坐標為:(2,2),或(-6,0),或(4,6).24.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標值相反,顯然能排除C、D;驗證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯誤.故選B.25.現(xiàn)有一個關于平面圖形的命題:如圖,同一個平面內有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為______.答案:∵同一個平面內有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24,類比到空間有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為a38,故為a38.26.如圖,已知OA、OB是⊙O的半徑,且OA⊥OB,P是線段OA上一點,直線BP交⊙O于點Q,過Q作⊙O的切線交直線OA于點E,求證:∠OBP+∠AQE=45°.答案:證明:連接AB,則∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°27.已知矩陣A=abcd,若矩陣A屬于特征值3的一個特征向量為α1=11,屬于特征值-1的一個特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.28.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD=______cm.答案:∵易知AB=32+42=5,又由切割線定理得BC2=BD?AB,∴42=BD?5∴BD=165.故為:16529.若直線的參數方程為(t為參數),則該直線的斜率為()

A.

B.2

C.1

D.-1答案:D30.點P(x0,y0)在圓x2+y2=r2內,則直線x0x+y0y=r2和已知圓的公共點的個數為(

A.0

B.1

C.2

D.不能確定答案:A31.已知函數f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數”.在函數①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數”.(填上正確的函數序號)答案:f1(x),f2(x)是“保三角形函數”,f3(x)不是“保三角形函數”.任給三角形,設它的三邊長分別為a,b,c,則a+b>c,不妨假設a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數”.對于f3(x),3,3,5可作為一個三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數”.故為:①②.32.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.33.下列命題中,正確的是()

A.若a∥b,則a與b的方向相同或相反

B.若a∥b,b∥c,則a∥c

C.若兩個單位向量互相平行,則這兩個單位向量相等

D.若a=b,b=c,則a=c答案:D34.設A(3,3,1),B(1,0,5),C(0,1,0),則AB的中點M到點C的距離為

______.答案:M為AB的中點設為(x,y,z),∴x=3+12=2,y=32,z=1+52=3,∴M(2,32,3),∵C(0,1,0),∴MC=22+(32-1)

2

+33=532,故為:532.35.在△ABC中,“A=45°”是“sinA=22”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當A=45°時,sinA=22成立.若當A=135°時,滿足sinA=22.所以,“A=45°”是“sinA=22”的充分不必要條件.故選A.36.設x,y∈R,且滿足x2+y2=1,求x+y的最大值為()

A.

B.

C.2

D.1答案:A37.如圖,AB是半圓O的直徑,C、D是半圓上的兩點,半圓O的切線PC交AB的延長線于點P,∠PCB=25°,則∠ADC為()

A.105°

B.115°

C.120°

D.125°

答案:B38.橢圓的長軸長為10,短軸長為8,則橢圓上的點到橢圓中心的距離的取值范圍是______.答案:橢圓上的點到圓心的最小距離為短半軸的長度,最大距離為長半軸的長度因為橢圓的長軸長為10,短軸長為8,所以橢圓上的點到圓心的最小距離為4,最大距離為5所以橢圓上的點到橢圓中心距離的取值范圍是[4,5]故為:[4,5]39.對總數為N的一批零件抽取一個容量為30的樣本,若每個零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.40.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運會的一號、二號和三號場地的乒乓球裁判工作,每個場地由兩名來自不同國家的裁判組成,則不同的安排方案總數有()

A.12種

B.48種

C.90種

D.96種答案:B41.將一枚均勻硬幣

隨機擲20次,則恰好出現(xiàn)10次正面向上的概率為()

A.

B.

C.

D.答案:D42.下列表述正確的是()

①歸納推理是由部分到整體的推理;

②歸納推理是由一般到一般的推理;

③演繹推理是由一般到特殊的推理;

④類比推理是由特殊到一般的推理;

⑤類比推理是由特殊到特殊的推理.

A.①②③

B.②③④

C.②④⑤

D.①③⑤答案:D43.如果:在10進制中2004=4×100+0×101+0×102+2×103,那么類比:在5進制中數碼2004折合成十進制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.44.無論m,n取何實數值,直線(3m-n)x+(m+2n)y-n=0都過定點P,則P點坐標為

A.(-1,3)

B.

C.

D.答案:D45.在(x+2y)n的展開式中第六項與第七項的系數相等,求展開式中二項式系數最大的項.答案:∵在(x+2y)n的展開式中第六項與第七項的系數相等,∴Cn525=Cn626,∴n=8,∴二項式共有9項,最中間一項的系數最大即展開式中二項式系數最大的項是第5項.46.某商人將彩電先按原價提高40%,然后在廣告中寫上“大酬賓,八折優(yōu)惠”,結果是每臺彩電比原價多賺了270元,則每臺彩電原價是______元.答案:設每臺彩電的原價是x元,則有:(1+40%)x×0.8-x=270,解得:x=2250,故為:2250.47.已知某幾何體的三視圖如圖,畫出它的直觀圖,求該幾何體的表面積和體積.答案:由三視圖可知:該幾何體是由下面長、寬、高分別為4、4、2的長方體,上面為高是2、底面是邊長分別為4、4的矩形的四棱錐,而組成的幾何體.它的直觀圖如圖.∴S表面積=4×2×4+4×4+4×12×4×22=48+162.V體積=4×4×2+13×4×4×2=1283.48.已知函數f(x)=x2+px+q與函數y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)()

A.均為正值

B.均為負值

C.一正一負

D.至少有一個等于0答案:D49.參數方程為t為參數)表示的曲線是()

A.一條直線

B.兩條直線

C.一條射線

D.兩條射線答案:D50.已知,,且與垂直,則實數λ的值為()

A.±

B.1

C.-

D.答案:D第2卷一.綜合題(共50題)1.用秦九韶算法求多項式f(x)=8x7+5x6+3x4+2x+1,當x=2時的值.答案:根據秦九韶算法,把多項式改寫成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當x=2時,多項式的值為1397.2.已知矩陣M=2a21,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0)

(1)求實數a的值;

(2)求矩陣M的特征值及其對應的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當λ=-1時,(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個特征向量為1-1;當λ=4時,(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個特征向量為32.3.如圖,AB是⊙O的直徑,P是AB延長線上的一點.過P作⊙O的切線,切點為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設圓的直徑是x則三角形ABC是一個含有30°角的三角形,∴BC=12AB,三角形BPC是一個等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:44.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個數為______.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個數為8.故為:85.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時將量詞對任意的x∈R變?yōu)榇嬖趯崝祒,再將不等號≥變?yōu)椋技纯桑蕿椋捍嬖趯崝祒,使得x<2.6.已知函數f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因為f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.7.意大利數學家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應的程序.答案:見解析解析:解:根據題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數是前面兩個月兔子對數的和,設第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應變第個月兔子的對數(的舊值),變量的新值應變?yōu)榈趥€月兔子的對數(的舊值),這樣,用求出變量的新值就是個月兔子的數,依此類推,可以得到一個數序列,數序列的第項就是年底應有兔子對數,我們可以先確定前兩個月的兔子對數均為,以此為基準,構造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結果.流程圖和程序如下:S=1Q=1I=3WHILE

I<=12F=S+QQ=SS=FI=I+1WENDPRINT

FEND8.已知直線l的參數方程為x=3+12ty=7+32t(t為參數),曲線C的參數方程為x=4cosθy=4sinθ(θ為參數).

(I)將曲線C的參數方程轉化為普通方程;

(II)若直線l與曲線C相交于A、B兩點,試求線段AB的長.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.9.若=(2,-3,1)是平面α的一個法向量,則下列向量中能作為平面α的法向量的是()

A.(0,-3,1)

B.(2,0,1)

C.(-2,-3,1)

D.(-2,3,-1)答案:D10.與直線2x+y+1=0的距離為的直線的方程是()

A.2x+y=0

B.2x+y-2=0

C.2x+y=0或2x+y-2=0

D.2x+y=0或2x+y+2=0答案:D11.如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點C、M,與AC交于N,見圖中非陰影部分),則該半圓的半徑長為______.答案:連接OM,則OM⊥AB.設⊙O的半徑OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故為33.12.曲線與坐標軸的交點是(

)A.B.C.D.答案:B解析:當時,,而,即,得與軸的交點為;當時,,而,即,得與軸的交點為13.如圖給出的是計算1+13+15+…+12013的值的一個程序框圖,圖中空白執(zhí)行框內應填入i=______.答案:∵該程序的功能是計算1+13+15+…+12013的值,最后一次進入循環(huán)的終值為2013,即小于等于2013的數滿足循環(huán)條件,大于2013的數不滿足循環(huán)條件,由循環(huán)變量的初值為1,步長為2,故執(zhí)行框中應該填的語句是:i=i+2.故為:i+2.14.在半徑為1的圓內任取一點,以該點為中點作弦,則所做弦的長度超過3的概率是()A.15B.14C.13D.12答案:如圖,C是弦AB的中點,在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合條件的點必須在半徑為12圓內,則所做弦的長度超過3的概率是P=S小圓S大圓=(12)2ππ=14.故選B.15.已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,則λ=______.答案:∵a=(3λ,6,λ+6),b=(λ+1,3,2λ)為兩平行平面的法向量,∴a∥b.∴存在實數k,使得a=kb,∴3λ=k(λ+1)6=3kλ+6=2λk,解得k=2λ=2,故為216.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當的坐標系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標軸建立空間直角坐標系.(如圖所示).設棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.17.過點M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設所求直線與已知直線l1,l2分別交于A、B兩點.∵點B在直線l2:2x+y-8=0上,故可設B(t,8-2t).又M(0,1)是AB的中點,由中點坐標公式得A(-t,2t-6).∵A點在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.18.極點到直線ρ(cosθ+sinθ)=3的距離是

______.答案:將原極坐標方程ρ(cosθ+sinθ)=3化為:直角坐標方程為:x+y=3,原點到該直線的距離是:d=|3|2=62.∴所求的距離是:62.故填:62.19.己知△ABC的外心、重心、垂心分別為O,G,H,若,則λ=()

A.3

B.2

C.

D.答案:A20.在殘差分析中,殘差圖的縱坐標為______.答案:有殘差圖的定義知道,作圖時縱坐標為殘差,橫坐標可以選為樣本編號,或身高數據,或體重的估計值,這樣做出的圖形稱為殘差圖.故為:殘差.21.若方程Ax2+By2=1表示焦點在y軸上的雙曲線,則A、B滿足的條件是()

A.A>0,且B>0

B.A>0,且B<0

C.A<0,且B>0

D.A<0,且B<0答案:C22.如圖,從圓O外一點P引圓O的切線PA和割線PBC,已知PA=22,PC=4,圓心O到BC的距離為3,則圓O的半徑為______.答案:∵PA為圓的切線,PBC為圓的割線,由線割線定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圓心O到BC的距離為3,∴R=2故為:223.根據下面的要求,求滿足1+2+3+…+n>500的最小的自然數n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個程序,但有2處錯誤,請找出錯誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結構是直到滿足條件退出循環(huán),While錯誤,應改成LOOP

UNTIL;②根據循環(huán)次數可知輸出n+1

應改為輸出n;24.設F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內,若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F(xiàn)2為端點的線段.故選D.25.山東魯潔棉業(yè)公司的科研人員在7塊并排、形狀大小相同的試驗田上對某棉花新品種進行施化肥量x對產量y影響的試驗,得到如下表所示的一組數據(單位:kg).

施化肥量x15202530354045棉花產量y330345365405445450455(1)畫出散點圖;

(2)判斷是否具有相關關系.答案:(1)根據已知表格中的數據可得施化肥量x和產量y的散點圖如下所示:(2)根據(1)中散點圖可知,各組數據對應點大致分布在一個條形區(qū)域內(一條直線附近)故施化肥量x和產量y具有線性相關關系.26.構成多面體的面最少是(

A.三個

B.四個

C.五個

D.六個答案:B27.設橢圓=1(a>b>0)的離心率為,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)()

A.必在圓x2+y2=2內

B.必在圓x2+y2=2上

C.必在圓x2+y2=2外

D.以上三種情形都有可能答案:A28.設隨機變量x~B(n,p),若Ex=2.4,Dx=1.44則()

A.n=4,p=0.6

B.n=6,p=0.4

C.n=8,p=0.3

D.n=24,p=0.1答案:B29.選修4-2:矩陣與變換

已知矩陣A=33cd,若矩陣A屬于特征值6的一個特征向量為α1=11,屬于特征值1的一個特征向量為α2=3-2.求矩陣A的逆矩陣.答案:由矩陣A屬于特征值6的一個特征向量為α1=11,可得33cd11=611,即c+d=6;由矩陣A屬于特征值1的一個特征向量為α2=3-2可得,33cd3-2=3-2,即3c-2d=-2,解得c=2d=4,即A=3324,A逆矩陣是23-12-1312.30.通過隨機詢問110名不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:

男女總計愛好402060不愛好203050總計6050110為了判斷愛好該項運動是否與性別有關,由表中的數據此算得k2≈7.8,因為P(k2≥6.635)≈0.01,所以判定愛好該項運動與性別有關,那么這種判斷出錯的可能性為______.答案:由題意知本題所給的觀測值,k2≈7.8∵7.8>6.635,又∵P(k2≥6.635)≈0.01,∴這個結論有0.01=1%的機會說錯,故為:1%31.若數列{an}是等差數列,對于bn=1n(a1+a2+…+an),則數列{bn}也是等差數列.類比上述性質,若數列{cn}是各項都為正數的等比數列,對于dn>0,則dn=______時,數列{dn}也是等比數列.答案:在類比等差數列的性質推理等比數列的性質時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術平均數類比推理為幾何平均數等,故我們可以由數列{cn}是等差數列,則對于bn=1n(a1+a2+…+an),則數列{bn}也是等差數列.類比推斷:若數列{cn}是各項均為正數的等比數列,則當dn=nC1C2C3Cn時,數列{dn}也是等比數列.故為:nC1C2C3Cn32.直線(a+1)x-(2a+5)y-6=0必過一定點,定點的坐標為(

)。答案:(-4,-2)33.b1是[0,1]上的均勻隨機數,b=3(b1-2),則b是區(qū)間______上的均勻隨機數.答案:∵b1是[0,1]上的均勻隨機數,b=3(b1-2)∵b1-2是[-2,-1]上的均勻隨機數,∴b=3(b1-2)是[-6,-3]上的均勻隨機數,故為:[-6,-3]34.已知△ABC中,過重心G的直線交邊AB于P,交邊AC于Q,設AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過重心G且平行于邊BC∵點G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項為A35.已知函數f(x)=f(x+1)(x<4)2x(x≥4),則f(log23)=______.答案:因為1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故為:24.36.設點P對應的復數為-3+3i,以原點為極點,實軸正半軸為極軸建立極坐標系,則點P的極坐標為()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A37.直線l1:y=ax+b,l2:y=bx+a

(a≠0,b≠0,a≠b),在同一坐標系中的圖形大致是()

A.

B.

C.

D.

答案:C38.對于實數x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.39.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點,則a的值是(

A.-2

B.-1

C.0

D.1答案:B40.甲,乙兩個工人在同樣的條件下生產,日產量相等,每天出廢品的情況如下表所列,則有結論:()

工人

廢品數

0

1

2

3

0

1

2

3

概率

0.4

0.3

0.2

0.1

0.3

0.5

0.2

0

A.甲的產品質量比乙的產品質量好一些

B.乙的產品質量比甲的產品質量好一些

C.兩人的產品質量一樣好

D.無法判斷誰的質量好一些答案:B41.設A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.

(1)求a的值及集合A、B;

(2)設全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集為:,{﹣5},{},{﹣5,}.42.已知空間四點A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,則x的值為[

]A

.4

B.1

C.10

D.11答案:D43.方程2x2+ky2=1表示的曲線是長軸在y軸的橢圓,則實數k的范圍是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:橢圓方程化為x212+y21k=1.焦點在y軸上,則1k>12,即k<2.又k>0,∴0<k<2.故選C.44.已知a、b、c為某一直角三角形的三條邊長,c為斜邊.若點(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據題意可知:當(m,n)運動到原點與已知直線作垂線的垂足位置時,m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據勾股定理得:c2=a2+b2,所以原點(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.45.4個人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據分類計數問題,可以列舉出所有的結果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結果,故為:946.設M是□ABCD的對角線的交點,O為任意一點(且不與M重合),則OA+OB+OC+OD

等于()A.OMB.2OMC.3OMD.4OM答案:∵O為任意一點,不妨把A點O看成O點,則OA+OB+OC+OD=0+AB+AC

+AD,∵M是□ABCD的對角線的交點,∴0+AB+AC+AD=2AC=4AM故選D47.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個動點,OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點共線可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點)上存在與AB'平行的切線,所以λ∈(12,2).故選C.48.在空間直角坐標系中,O為坐標原點,設A(,,),B(,,0),C(

,,),則(

A.OA⊥AB

B.AB⊥AC

C.AC⊥BC

D.OB⊥OC答案:C49.如圖的矩形,長為5,寬為2,在矩形內隨機地撒300顆黃豆,數得落在陰影部分的黃豆數為138顆,則我們可以估計出陰影部分的面積為

______.答案:根據題意:黃豆落在陰影部分的概率是138300矩形的面積為10,設陰影部分的面積為s則有s10=138300∴s=235故為:23550.已知F1(-8,3),F(xiàn)2(2,3),動點P滿足PF1-PF2=10,則點P的軌跡是______.答案:由于兩點間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點P的軌跡應是一條射線.故為一條射線.第3卷一.綜合題(共50題)1.如圖所示的方格紙中有定點O,P,Q,E,F(xiàn),G,H,則=()

A.

B.

C.

D.

答案:C2.k取何值時,一元二次方程kx2+3kx+k=0的兩根為負。答案:解:∴k≤或k>33.對于函數f(x),若存在區(qū)間M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數f(x)的一個“穩(wěn)定區(qū)間”現(xiàn)有四個函數:

①f(x)=ex②f(x)=x3③f(x)=sinπ2x④f(x)=lnx,其中存在“穩(wěn)定區(qū)間”的函數有()A.①②B.②③C.③④D.②④答案:①對于函數f(x)=ex若存在“穩(wěn)定區(qū)間”[a,b],由于函數是定義域內的增函數,故有ea=a,eb=b,即方程ex=x有兩個解,即y=ex和y=x的圖象有兩個交點,這與即y=ex和y=x的圖象沒有公共點相矛盾,故①不存在“穩(wěn)定區(qū)間”.②對于f(x)=x3存在“穩(wěn)定區(qū)間”,如x∈[0,1]時,f(x)=x3∈[0,1].③對于f(x)=sinπ2x,存在“穩(wěn)定區(qū)間”,如x∈[0,1]時,f(x)=sinπ2x∈[0,1].④對于f(x)=lnx,若存在“穩(wěn)定區(qū)間”[a,b],由于函數是定義域內的增函數,故有l(wèi)na=a,且lnb=b,即方程lnx=x有兩個解,即y=lnx

和y=x的圖象有兩個交點,這與y=lnx和y=x的圖象沒有公共點相矛盾,故④不存在“穩(wěn)定區(qū)間”.故選B.4.在調試某設備的線路設計中,要選一個電阻,調試者手中只有阻值分別為0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七種阻值不等的定值電阻,他用分數法進行優(yōu)法進行優(yōu)選試驗時,依次將電阻值從小到大安排序號,則第1個試點的電阻的阻值是(

).答案:3.5kΩ5.已知點P(3,m)在以點F為焦點的拋物線x=4t2y=4t(t為參數)上,則|PF|的長為______.答案:∵拋物線x=4t2y=4t(t為參數)上,∴y2=4x,∵點P(3,m)在以點F為焦點的拋物線x=4t2y=4t(t為參數)上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.6.若一點P的極坐標是(r,θ),則它的直角坐標如何?答案:由題意可知x=rcosθ,y=rsinθ.所以點P的極坐標是(r,θ)的直角坐標為:(rcosθ,rsinθ).7.已知命題p:?x∈R,x2-x+1>0,則命題¬p

是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.8.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B9.已知向量a=(8,x,x).b=(x,1,2),其中x>0.若a∥b,則x的值為()

A.8

B.4

C.2

D.0答案:B10.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()

A.

B.

C.或

D.或答案:C11.構成多面體的面最少是()

A.三個

B.四個

C.五個

D.六個答案:B12.A、B為球面上相異兩點,則通過A、B兩點可作球的大圓有()A.一個B.無窮多個C.零個D.一個或無窮多個答案:如果A,B兩點為球面上的兩極點(即球直徑的兩端點)則通過A、B兩點可作球的無數個大圓如果A,B兩點不是球面上的兩極點(即球直徑的兩端點)則通過A、B兩點可作球的一個大圓故選:D13.若矩陣A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011屆學生高二上學期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數學成績,i=3表示英語成績,i=4表示語數外三門總分成績j=k,k∈N*表示第50k名分數.若經過一定量的努力,各科能前進的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分數,那么他應把努力方向主要放在哪一門學科上()

A.語文

B.數學

C.外語

D.都一樣答案:B14.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標系與參數方程選做題)在極坐標系中,圓ρ=-2sinθ的圓心的極坐標是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當x≥5時,x-5+x+3≥10,∴x≥6;當x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標為(-1,0),∴其極坐標是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.15.利用獨立性檢驗對兩個分類變量是否有關系進行研究時,若有99.5%的把握說事件A和B有關系,則具體計算出的數據應該是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C16.F1,F(xiàn)2是橢圓x2a2+y2b2=1的兩個焦點,點P是橢圓上任意一點,從F1引∠F1PF2的外角平分線的垂線,交F2P的延長線于M,則點M的軌跡是______.答案:設從F1引∠F1PF2的外角平分線的垂線,垂足為R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分線∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根據橢圓的定義,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即動點M到點F2的距離為定值2a,因此,點M的軌跡是以點F2為圓心,半徑為2a的圓.故為:以點F2為圓心,半徑為2a的圓.17.已知圓的極坐標方程是ρ=2cosθ,那么該圓的直角坐標方程是()

A.(x-1)2+y2=1

B.x2+(y-1)2=1

C.(x+1)2+y2=1

D.x2+y2=2答案:A18.在△ABC中,D為AB上一點,M為△ABC內一點,且滿足AD=34AB,AM=AD+35BC,則△AMD與△ABC的面積比為()A.925B.45C.916D.920答案:AP=AD+DP=AD+35BC,DP=35BC.∴三角形ADP的高三角形ABC=ADAB=34,∴S△APDS△ABC=35?34=920.故選D.19.復數z=sin1+icos2在復平面內對應的點位于第______象限.答案:z對應的點為(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故為:四20.O、A、B、C為空間四個點,又為空間的一個基底,則()

A.O、A、B、C四點共線

B.O、A、B、C四點共面,但不共線

C.O、A、B、C四點中任意三點不共線

D.O、A、B、C四點不共面答案:D21.若雙曲線的焦點到其漸近線的距離等于實軸長,則該雙曲線的離心率為()

A.5

B.

C.2

D.答案:B22.設S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當n=2時,n2=4故S(2)=12+13+14故選D23.雙曲線(n>1)的兩焦點為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B24.設一次試驗成功的概率為p,進行100次獨立重復試驗,當p=______時,成功次數的標準差的值最大,其最大值為______.答案:由獨立重復試驗的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等號在p=q=12時成立,∴Dξ=100×12×12=25,σξ=25=5.故為:12;525.在平面直角坐標系下,曲線C1:x=2t+2ay=-t(t為參數),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點,則實數a的取值范圍

______.答案:∵曲線C1:x=2t+2ay=-t(t為參數),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點,∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.26.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點,則a的值是(

A.-2

B.-1

C.0

D.1答案:B27.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()

A.經過兩點O1,O2的直線

B.線段O1O2的中垂線

C.兩圓公共弦所在的直線

D.一條直線且該直線上的點到兩圓的切線長相等答案:D28.點(2,-2)的極坐標為______.答案:∵點(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(2,-2)的極坐標為(22,-π4)故為(22,-π4).29.“所有9的倍數(M)都是3的倍數(P),某奇數(S)是9的倍數(M),故此奇數(S)是3的倍數(P)”,上述推理是()

A.小前提錯

B.結論錯

C.正確的

D.大前提錯答案:C30.已知求證:答案:證明見解析解析:證明:31.若f(x)=x2,則對任意實數x1,x2,下列不等式總成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A32.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調遞減∵logax>loga5∴0<x<5故為:(0,5)33.山東魯潔棉業(yè)公司的科研人員在7塊并排、形狀大小相同的試驗田上對某棉花新品種進

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論