




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
思想04運(yùn)用轉(zhuǎn)化與化歸的思想方法解題【命題規(guī)律】高考命題中,以知識(shí)為載體,以能力立意、思想方法為靈魂,以核心素養(yǎng)為統(tǒng)領(lǐng),兼顧試題的基礎(chǔ)性、綜合性、應(yīng)用性和創(chuàng)新性,展現(xiàn)數(shù)學(xué)的科學(xué)價(jià)值和人文價(jià)值.高考試題一是著眼于知識(shí)點(diǎn)新穎巧妙的組合,二是著眼于對(duì)數(shù)學(xué)思想方法、數(shù)學(xué)能力的考查.如果說(shuō)數(shù)學(xué)知識(shí)是數(shù)學(xué)的內(nèi)容,可用文字和符號(hào)來(lái)記錄和描述,那么數(shù)學(xué)思想方法則是數(shù)學(xué)的意識(shí),重在領(lǐng)會(huì)、運(yùn)用,屬于思維的范疇,用于對(duì)數(shù)學(xué)問(wèn)題的認(rèn)識(shí)、處理和解決.高考中常用到的數(shù)學(xué)思想主要有分類討論思想、數(shù)形結(jié)合思想、函數(shù)與方程思想、轉(zhuǎn)化與化歸思想等.【核心考點(diǎn)目錄】核心考點(diǎn)一:運(yùn)用“熟悉化原則”轉(zhuǎn)化化歸問(wèn)題核心考點(diǎn)二:運(yùn)用“簡(jiǎn)單化原則”轉(zhuǎn)化化歸問(wèn)題核心考點(diǎn)三:運(yùn)用“直觀化原則”轉(zhuǎn)化化歸問(wèn)題核心考點(diǎn)四:運(yùn)用“正難則反原則”轉(zhuǎn)化化歸問(wèn)題【真題回歸】1.(2022·全國(guó)·統(tǒng)考高考真題)已知橢圓SKIPIF1<0,C的上頂點(diǎn)為A,兩個(gè)焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0.過(guò)SKIPIF1<0且垂直于SKIPIF1<0的直線與C交于D,E兩點(diǎn),SKIPIF1<0,則SKIPIF1<0的周長(zhǎng)是________________.【答案】13【解析】∵橢圓的離心率為SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴橢圓的方程為SKIPIF1<0,不妨設(shè)左焦點(diǎn)為SKIPIF1<0,右焦點(diǎn)為SKIPIF1<0,如圖所示,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為正三角形,∵過(guò)SKIPIF1<0且垂直于SKIPIF1<0的直線與C交于D,E兩點(diǎn),SKIPIF1<0為線段SKIPIF1<0的垂直平分線,∴直線SKIPIF1<0的斜率為SKIPIF1<0,斜率倒數(shù)為SKIPIF1<0,直線SKIPIF1<0的方程:SKIPIF1<0,代入橢圓方程SKIPIF1<0,整理化簡(jiǎn)得到:SKIPIF1<0,判別式SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,得SKIPIF1<0,∵SKIPIF1<0為線段SKIPIF1<0的垂直平分線,根據(jù)對(duì)稱性,SKIPIF1<0,∴SKIPIF1<0的周長(zhǎng)等于SKIPIF1<0的周長(zhǎng),利用橢圓的定義得到SKIPIF1<0周長(zhǎng)為SKIPIF1<0.故答案為:13.2.(2020·全國(guó)·統(tǒng)考高考真題)設(shè)復(fù)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=__________.【答案】SKIPIF1<0【解析】方法一:設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.方法二:如圖所示,設(shè)復(fù)數(shù)SKIPIF1<0所對(duì)應(yīng)的點(diǎn)為SKIPIF1<0,SKIPIF1<0,由已知SKIPIF1<0,∴平行四邊形SKIPIF1<0為菱形,且SKIPIF1<0都是正三角形,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0.3.(2020·天津·統(tǒng)考高考真題)已知甲、乙兩球落入盒子的概率分別為SKIPIF1<0和SKIPIF1<0.假定兩球是否落入盒子互不影響,則甲、乙兩球都落入盒子的概率為_(kāi)________;甲、乙兩球至少有一個(gè)落入盒子的概率為_(kāi)________.【答案】
SKIPIF1<0
SKIPIF1<0【解析】甲、乙兩球落入盒子的概率分別為SKIPIF1<0,且兩球是否落入盒子互不影響,所以甲、乙都落入盒子的概率為SKIPIF1<0,甲、乙兩球都不落入盒子的概率為SKIPIF1<0,所以甲、乙兩球至少有一個(gè)落入盒子的概率為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.4.(2022·全國(guó)·統(tǒng)考高考真題)如圖,四面體SKIPIF1<0中,SKIPIF1<0,E為AC的中點(diǎn).(1)證明:平面SKIPIF1<0平面ACD;(2)設(shè)SKIPIF1<0,點(diǎn)F在BD上,當(dāng)SKIPIF1<0的面積最小時(shí),求三棱錐SKIPIF1<0的體積.【解析】(1)由于SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0.由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,由于SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.(2)[方法一]:判別幾何關(guān)系依題意SKIPIF1<0,SKIPIF1<0,三角形SKIPIF1<0是等邊三角形,所以SKIPIF1<0,由于SKIPIF1<0,所以三角形SKIPIF1<0是等腰直角三角形,所以SKIPIF1<0.SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.由于SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,所以當(dāng)SKIPIF1<0最短時(shí),三角形SKIPIF1<0的面積最小過(guò)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0過(guò)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.[方法二]:等體積轉(zhuǎn)換SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0是邊長(zhǎng)為2的等邊三角形,SKIPIF1<0連接SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0【方法技巧與總結(jié)】將問(wèn)題進(jìn)行化歸與轉(zhuǎn)化時(shí),一般應(yīng)遵循以下幾種原則:1、熟悉化原則:許多數(shù)學(xué)問(wèn)題的解決過(guò)程就是將陌生的問(wèn)題轉(zhuǎn)化為熟悉的問(wèn)題,以利于我們運(yùn)用已有知識(shí)、方法以及解題經(jīng)驗(yàn)來(lái)解決.在具體的解題過(guò)程中,通常借助構(gòu)造、換元、引入?yún)?shù)、建系等方法將條件與問(wèn)題聯(lián)系起來(lái),使原問(wèn)題轉(zhuǎn)化為可利用熟悉的背景知識(shí)和模型求解的問(wèn)題.2、簡(jiǎn)單化原則:根據(jù)問(wèn)題的特點(diǎn)轉(zhuǎn)化命題,使原問(wèn)題轉(zhuǎn)化為與之相關(guān)、易于解決的新問(wèn)題.借助特殊化、等價(jià)轉(zhuǎn)化、不等轉(zhuǎn)化等方法常常能獲得直接、清晰、簡(jiǎn)潔的解法,從而實(shí)現(xiàn)通過(guò)對(duì)簡(jiǎn)單問(wèn)題的解答,達(dá)到解決復(fù)雜問(wèn)題的目的.3、直觀化原則:將較抽象的問(wèn)題轉(zhuǎn)化為比較直觀的問(wèn)題,數(shù)學(xué)問(wèn)題的特點(diǎn)之一便是它具有抽象性,有些抽象的問(wèn)題,直接分析解決難度較大,需要借助數(shù)形結(jié)合法、圖象法等手段把它轉(zhuǎn)化為具體的、更為直觀的問(wèn)題來(lái)解決.4、正難則反原則:?jiǎn)栴}直接求解困難時(shí),可考慮運(yùn)用反證法或補(bǔ)集法或用逆否命題間接地解決問(wèn)題.一般地,在含有“至多”、“至少”及否定詞的問(wèn)題中,若出現(xiàn)多種成立的情形,則不成立的情形相對(duì)很少,此時(shí)從反面考慮較簡(jiǎn)單.【核心考點(diǎn)】核心考點(diǎn)一:運(yùn)用“熟悉化原則”轉(zhuǎn)化化歸問(wèn)題【典型例題】例1.(2023春·云南昆明·高三昆明市第三中學(xué)階段練習(xí))如圖所示,在△ABC中,點(diǎn)D為BC邊上一點(diǎn),且BD=1,E為AC的中點(diǎn),AE=SKIPIF1<0,cosB=SKIPIF1<0,∠ADB=SKIPIF1<0.(1)求AD的長(zhǎng);(2)求△ADE的面積.【解析】(1)在△ABD中,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由正弦定理SKIPIF1<0,知SKIPIF1<0.(2)由(1)知AD=2,依題意得AC=2AE=3,在△ACD中,由余弦定理得AC2=AD2+DC2-2AD?CDcos∠ADC,即SKIPIF1<0,∴DC2-2DC-5=0,解得SKIPIF1<0(負(fù)值舍去).∴SKIPIF1<0,從而SKIPIF1<0.例2.(2023·吉林·高三校聯(lián)考競(jìng)賽)已知三棱錐P-ABC的四個(gè)頂點(diǎn)在球O的球面上,PA=PB=PC,△ABC是邊長(zhǎng)為2的正三角形,E?F分別是AC?BC的中點(diǎn),SKIPIF1<0,則球O的表面積為_(kāi)___________.【答案】SKIPIF1<0【解析】由于P-ABC為正三棱錐,故SKIPIF1<0,從而△EPF為等邊三角形,且邊長(zhǎng)EF=1.由此可知側(cè)面PAC的高PE=1,故棱長(zhǎng)SKIPIF1<0.還原成棱長(zhǎng)為SKIPIF1<0的正方體可知,P-ABC的外接球的直徑長(zhǎng)恰為正方體的體對(duì)角線長(zhǎng)SKIPIF1<0,從而表面積為SKIPIF1<0.故答案為:SKIPIF1<0.例3.(2023春·山東濰坊·高三校考階段練習(xí))已知正實(shí)數(shù)a,b滿足SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)___________.【答案】SKIPIF1<0.【解析】SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0最小值是SKIPIF1<0.故答案為:SKIPIF1<0.例4.(2023春·江蘇南京·高三南京市第一中學(xué)??茧A段練習(xí))如圖,在四邊形ABCD中,∠B=60°,AB=3,BC=6,且SKIPIF1<0,若M,N是線段BC上的動(dòng)點(diǎn),且SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)__________【答案】SKIPIF1<0【解析】SKIPIF1<0,則SKIPIF1<0,如圖,建立平面直角坐標(biāo)系,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取得最小值SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0例5.(2023春·廣西桂林·高三??茧A段練習(xí))已知三棱錐SKIPIF1<0的四個(gè)頂點(diǎn)在球SKIPIF1<0的球面上,SKIPIF1<0,SKIPIF1<0是邊長(zhǎng)為2的正三角形,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0,則球SKIPIF1<0的體積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0中點(diǎn),SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0為邊長(zhǎng)為2的等邊三角形,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由余弦定理SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0為SKIPIF1<0中點(diǎn),又SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0兩兩垂直,即三棱錐SKIPIF1<0是以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為棱的正方體的一部分;所以球SKIPIF1<0的直徑SKIPIF1<0,解得SKIPIF1<0,則球SKIPIF1<0的體積SKIPIF1<0,故選:D.核心考點(diǎn)二:運(yùn)用“簡(jiǎn)單化原則”轉(zhuǎn)化化歸問(wèn)題【典型例題】例6.(2023春·陜西渭南·高三渭南市瑞泉中學(xué)校考階段練習(xí))平面四邊形ABCD中,SKIPIF1<0,AB=2,則AD長(zhǎng)度的取值范圍________.【答案】SKIPIF1<0【解析】如圖所示,延長(zhǎng)SKIPIF1<0,SKIPIF1<0交于E,平行移動(dòng)CD,當(dāng)C與D重合于E點(diǎn)時(shí),SKIPIF1<0最長(zhǎng),在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,AB=2,由正弦定理可得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0;平行移動(dòng)CD,到圖中AF位置,即當(dāng)A與D重合時(shí),SKIPIF1<0最短,為0.綜上可得,AD長(zhǎng)度的取值范圍為SKIPIF1<0故答案為:SKIPIF1<0.例7.(2023春·北京·高三北京市第一六一中學(xué)??迹┤忮FSKIPIF1<0中,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),記三棱錐SKIPIF1<0的體積為SKIPIF1<0,SKIPIF1<0的體積為SKIPIF1<0,則SKIPIF1<0____________【答案】SKIPIF1<0【解析】由已知SKIPIF1<0設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0距離為SKIPIF1<0,則點(diǎn)SKIPIF1<0到平面SKIPIF1<0距離為SKIPIF1<0,所以,SKIPIF1<0例8.(2023秋·山東聊城·高三山東聊城一中??茧A段練習(xí))已知∠ACB=90°,P為平面ABC外一點(diǎn),PC=4,點(diǎn)P到∠ACB兩邊AC,BC的距離均為SKIPIF1<0,那么點(diǎn)P到平面ABC的距離為_(kāi)__________.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0在平面SKIPIF1<0內(nèi)的射影為SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,由于SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0,垂足分別為SKIPIF1<0,由于SKIPIF1<0,所以四邊形SKIPIF1<0是矩形.由于SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0;同理可證得SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0到平面SKIPIF1<0的距離是SKIPIF1<0.故答案為:SKIPIF1<0例9.(2023春·湖南衡陽(yáng)·高三校考)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為正數(shù),且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在平面直角坐標(biāo)系中畫(huà)出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象及直線SKIPIF1<0,結(jié)合圖象知SKIPIF1<0.方法二
令SKIPIF1<0,則SKIPIF1<0,易得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.故選:D.核心考點(diǎn)三:運(yùn)用“直觀化原則”轉(zhuǎn)化化歸問(wèn)題【典型例題】例10.(2023春·北京·高三??迹┮阎瘮?shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象如圖所示,那么滿足不等式SKIPIF1<0的SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因?yàn)楹瘮?shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0的圖像關(guān)于原點(diǎn)對(duì)稱,由此畫(huà)出函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象,在同一坐標(biāo)系內(nèi)畫(huà)出SKIPIF1<0的圖象,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的圖象與SKIPIF1<0的圖象交于SKIPIF1<0和SKIPIF1<0兩點(diǎn),如圖,所以結(jié)合圖像可知,SKIPIF1<0的解集為SKIPIF1<0.故選:C.例11.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0、SKIPIF1<0、SKIPIF1<0是平面向量,SKIPIF1<0是單位向量.若非零向量SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,向量SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值是A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】A【解析】設(shè)SKIPIF1<0,則由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0因此,SKIPIF1<0的最小值為圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0減去半徑1,為SKIPIF1<0選A.例12.(2023秋·福建莆田·高三莆田二中??迹┰O(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0,若存在唯一的整數(shù)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】令SKIPIF1<0,SKIPIF1<0,顯然直線SKIPIF1<0恒過(guò)點(diǎn)SKIPIF1<0,則“存在唯一的整數(shù)SKIPIF1<0,使得SKIPIF1<0”等價(jià)于“存在唯一的整數(shù)SKIPIF1<0使得點(diǎn)SKIPIF1<0在直線SKIPIF1<0下方”,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),不存在整數(shù)SKIPIF1<0使得點(diǎn)SKIPIF1<0在直線SKIPIF1<0下方,當(dāng)SKIPIF1<0時(shí),過(guò)點(diǎn)SKIPIF1<0作函數(shù)SKIPIF1<0圖象的切線,設(shè)切點(diǎn)為SKIPIF1<0,則切線方程為:SKIPIF1<0,而切線過(guò)點(diǎn)SKIPIF1<0,即有SKIPIF1<0,整理得:SKIPIF1<0,而SKIPIF1<0,解得SKIPIF1<0,因SKIPIF1<0,又存在唯一整數(shù)SKIPIF1<0使得點(diǎn)SKIPIF1<0在直線SKIPIF1<0下方,則此整數(shù)必為2,即存在唯一整數(shù)2使得點(diǎn)SKIPIF1<0在直線SKIPIF1<0下方,因此有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D核心考點(diǎn)四:運(yùn)用“正難則反原則”轉(zhuǎn)化化歸問(wèn)題【典型例題】例13.(2023·全國(guó)·高三專題練習(xí))已知矩形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0沿矩形的對(duì)角線SKIPIF1<0所在的直線進(jìn)行翻折,在翻折的過(guò)程中A.存在某個(gè)位置,使得直線SKIPIF1<0和直線SKIPIF1<0垂直B.存在某個(gè)位置,使得直線SKIPIF1<0和直線SKIPIF1<0垂直C.存在某個(gè)位置,使得直線SKIPIF1<0和直線SKIPIF1<0垂直D.無(wú)論翻折到什么位置,以上三組直線均不垂直【答案】A【解析】如圖所示:作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0翻折前SKIPIF1<0,易知存在一個(gè)狀態(tài)使SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0,故SKIPIF1<0正確SKIPIF1<0錯(cuò)誤;若SKIPIF1<0和SKIPIF1<0垂直,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0,不成立,故SKIPIF1<0錯(cuò)誤;若SKIPIF1<0和SKIPIF1<0垂直,SKIPIF1<0故SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0不成立,故SKIPIF1<0錯(cuò)誤;故選:SKIPIF1<0例14.(2023春·湖南·高三校聯(lián)考開(kāi)學(xué)考試)在平面直角坐標(biāo)系SKIPIF1<0中,圓SKIPIF1<0的方程為SKIPIF1<0,若直線SKIPIF1<0上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓SKIPIF1<0有公共點(diǎn),則SKIPIF1<0的最大值為_(kāi)_________.【答案】SKIPIF1<0【解析】∵圓C的方程為x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圓C是以(4,0)為圓心,1為半徑的圓;又直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),∴只需圓C′:(x-4)2+y2=4與直線y=kx-2有公共點(diǎn)即可.設(shè)圓心C(4,0)到直線y=kx-2的距離為d,SKIPIF1<0即3k2≤4k,∴0≤k≤SKIPIF1<0,故可知參數(shù)k的最大值為SKIPIF1<0.例15.(2023秋·陜西寶雞·高三陜西省寶雞市長(zhǎng)嶺中學(xué)??茧A段練習(xí))如圖,用K,SKIPIF1<0,SKIPIF1<0三類不同的元件連接成一個(gè)系統(tǒng).當(dāng)K正常工作且SKIPIF1<0,SKIPIF1<0至少有一個(gè)正常工作時(shí),系統(tǒng)正常工作.已知K,SKIPIF1<0,SKIPIF1<0正常工作的概率依次為0.8,0.7,0.7,則系統(tǒng)正常工作的概率為_(kāi)__________.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0同時(shí)不能正常工作的概率為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0至少有一個(gè)正常工作的概率為SKIPIF1<0,所以系統(tǒng)正常工作的概率為SKIPIF1<0,故答案為:SKIPIF1<0例16.(2023·全國(guó)·高三專題練習(xí))如圖,用A、B、C三類不同的元件連接成兩個(gè)系統(tǒng)SKIPIF1<0,SKIPIF1<0.當(dāng)元件A、B、C都正常工作時(shí),系統(tǒng)N1正常工作;當(dāng)元件A正常工作且元件B、C至少有一個(gè)正常工作時(shí),系統(tǒng)N2正常工作.已知元件A、B、C正常工作的概率依次為0.80、0.90、0.90.則系統(tǒng)N1正常工作的概率為_(kāi)__________,系統(tǒng)SKIPIF1<0正常工作的概率為_(kāi)__________.【答案】
0.648
0.792【解析】分別記元件A、B、C正常工作為事件A、B、C,由已知條件SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因?yàn)槭录嗀、B、C是相互獨(dú)立的,系統(tǒng)N1正常工作的概率為SKIPIF1<0.系統(tǒng)SKIPIF1<0正常工作的概率SKIPIF1<0SKIPIF1<0.故答案為:0.648;0.792.【新題速遞】一、單選題1.(2023春·江蘇鹽城·高三鹽城中學(xué)??迹┮阎猄KIPIF1<0滿足SKIPIF1<0,若存在實(shí)數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,則實(shí)數(shù)k的最小值為(
)A.-4 B.-1 C.1 D.4【答案】A【解析】構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0為奇函數(shù),且在SKIPIF1<0上單調(diào)增,由已知可知SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以,存在實(shí)數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,SKIPIF1<0又SKIPIF1<0,SKIPIF1<0.故選:A.2.(2023春·陜西榆林·高三綏德中學(xué)??迹┮阎猄KIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0的左、右焦點(diǎn),SKIPIF1<0是橢圓SKIPIF1<0的左頂點(diǎn),點(diǎn)SKIPIF1<0在過(guò)SKIPIF1<0且斜率為SKIPIF1<0的直線上,SKIPIF1<0為等腰三角形,SKIPIF1<0,則橢圓SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題知SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以直線SKIPIF1<0的傾斜角為SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0.聯(lián)立SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.SKIPIF1<0因?yàn)镾KIPIF1<0為等腰三角形,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,整理得:SKIPIF1<0.所以橢圓SKIPIF1<0的離心率為SKIPIF1<0.故選:D.3.(2023春·安徽淮北·高三淮北一中??茧A段練習(xí))已知函數(shù)SKIPIF1<0的最大值為M,最小值為m,則SKIPIF1<0等于(
)A.0 B.2 C.4 D.8【答案】C【解析】依題意SKIPIF1<0,故令SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.故選:C.4.(2023春·廣東廣州·高三校考)已知數(shù)列SKIPIF1<0是公比不等于SKIPIF1<0的等比數(shù)列,若數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的前2023項(xiàng)的和分別為SKIPIF1<0,SKIPIF1<0,9,則實(shí)數(shù)SKIPIF1<0的值(
)A.只有1個(gè) B.只有2個(gè) C.無(wú)法確定有幾個(gè) D.不存在【答案】A【解析】設(shè)SKIPIF1<0的公比為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0可得:SKIPIF1<0為等比數(shù)列,公比為SKIPIF1<0,SKIPIF1<0為等比數(shù)列,公比為SKIPIF1<0,則SKIPIF1<0①,SKIPIF1<0②,SKIPIF1<0③,①×②得:SKIPIF1<0④,由③④得:SKIPIF1<0,解得:SKIPIF1<0,故實(shí)數(shù)SKIPIF1<0的值只有1個(gè).故選:A5.(2023春·山西太原·高三統(tǒng)考)下列結(jié)論正確的個(gè)數(shù)是(
)①已知點(diǎn)SKIPIF1<0,則SKIPIF1<0外接圓的方程為SKIPIF1<0;②已知點(diǎn)SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0;③已知點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,SKIPIF1<0,且點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0.A.0 B.1 C.2 D.3【答案】D【解析】對(duì)于①,線段SKIPIF1<0的中垂線的直線方程為SKIPIF1<0,線段SKIPIF1<0的中垂線的直線方程為SKIPIF1<0,故圓心為SKIPIF1<0,半徑為SKIPIF1<0,即圓的方程為SKIPIF1<0,故①正確;對(duì)于②,設(shè)SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,整理可得SKIPIF1<0,故②正確;對(duì)于③,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,整理可得SKIPIF1<0,故③正確.故選:D.6.(2023春·廣西·高三校聯(lián)考階段練習(xí))已知橢圓和雙曲線有共同的焦點(diǎn)SKIPIF1<0,SKIPIF1<0,P是它們的一個(gè)交點(diǎn),且SKIPIF1<0,記橢圓和雙曲線的離心率分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】A【解析】如圖,設(shè)橢圓的長(zhǎng)半軸為SKIPIF1<0,雙曲線的實(shí)半軸長(zhǎng)為SKIPIF1<0,則根據(jù)橢圓及雙曲線的定義:SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,則在SKIPIF1<0中,由余弦定理得:SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0,即SKIPIF1<0,從而有SKIPIF1<0,整理得SKIPIF1<0,(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立)故選:A.7.(2023·全國(guó)·高三專題練習(xí))在某次數(shù)學(xué)考試中,學(xué)生成績(jī)SKIPIF1<0服從正態(tài)分布SKIPIF1<0.若SKIPIF1<0在SKIPIF1<0內(nèi)的概率是SKIPIF1<0,則從參加這次考試的學(xué)生中任意選取3名學(xué)生,恰有2名學(xué)生的成績(jī)不低于85的概率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因?yàn)閷W(xué)生成績(jī)服從正態(tài)分布SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以從參加這次考試的學(xué)生中任意選取1名學(xué)生,其成績(jī)不低于85的概率是SKIPIF1<0,則從參加這次考試的學(xué)生中任意選取3名學(xué)生,恰有2名學(xué)生的成績(jī)不低于85的概率是SKIPIF1<0.故選:A.二、多選題8.(2023·全國(guó)·高三專題練習(xí))已知M為圓C:SKIPIF1<0上的動(dòng)點(diǎn),P為直線l:SKIPIF1<0上的動(dòng)點(diǎn),則下列結(jié)論正確的是(
)A.直線l與圓C相切 B.直線l與圓C相離C.|PM|的最大值為SKIPIF1<0 D.|PM|的最小值為SKIPIF1<0【答案】BD【解析】圓C:SKIPIF1<0得圓心SKIPIF1<0,半徑SKIPIF1<0∵圓心SKIPIF1<0到直線l:SKIPIF1<0得距離SKIPIF1<0∴直線l與圓C相離A不正確,B正確;SKIPIF1<0C不正確,D正確;故選:BD.9.(2023春·江蘇鹽城·高三校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0SKIPIF1<0,SKIPIF1<0圖像一個(gè)最高點(diǎn)是SKIPIF1<0,距離點(diǎn)A最近的對(duì)稱中心坐標(biāo)為SKIPIF1<0,則下列說(shuō)法正確的有(
)A.SKIPIF1<0的值是6B.SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞增C.SKIPIF1<0時(shí)函數(shù)SKIPIF1<0圖像的一條對(duì)稱軸D.SKIPIF1<0的圖像向左平移SKIPIF1<0SKIPIF1<0個(gè)單位后得到SKIPIF1<0圖像,若SKIPIF1<0是偶函數(shù),則SKIPIF1<0的最小值是SKIPIF1<0【答案】AD【解析】由題意可知,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,其中SKIPIF1<0為SKIPIF1<0的最小正周期,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故A正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0,滿足題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0無(wú)解,綜上所述,SKIPIF1<0,從而SKIPIF1<0是一個(gè)偶函數(shù),故SKIPIF1<0在SKIPIF1<0上不單調(diào),故B錯(cuò)誤;又因?yàn)镾KIPIF1<0,所以SKIPIF1<0不是函數(shù)SKIPIF1<0圖像的一條對(duì)稱軸,故C錯(cuò)誤;對(duì)于選項(xiàng)D:由題意可得,SKIPIF1<0,若SKIPIF1<0是偶函數(shù),則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0的最小值是SKIPIF1<0,此時(shí)SKIPIF1<0,故D正確.故選:AD.10.(2023秋·遼寧朝陽(yáng)·高三統(tǒng)考開(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0,若過(guò)點(diǎn)SKIPIF1<0(其中SKIPIF1<0是整數(shù))可作曲線SKIPIF1<0的三條切線,則SKIPIF1<0的所有可能取值為(
)A.2 B.3 C.4 D.5【答案】ABCD【解析】由題知SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,則切線方程為SKIPIF1<0,將SKIPIF1<0,SKIPIF1<0代入得SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0的極大值為SKIPIF1<0,極小值為SKIPIF1<0,由題意知SKIPIF1<0,又SKIPIF1<0為整數(shù),SKIPIF1<0.故選:ABCD.11.(2023秋·遼寧朝陽(yáng)·高三統(tǒng)考開(kāi)學(xué)考試)已知SKIPIF1<0、SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)A是橢圓C上一點(diǎn),則下列說(shuō)法正確的是(
)A.SKIPIF1<0 B.橢圓C的離心率為SKIPIF1<0C.存在點(diǎn)A使得SKIPIF1<0 D.SKIPIF1<0面積的最大值為12【答案】AD【解析】由橢圓的標(biāo)準(zhǔn)方程,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0;對(duì)于A:由橢圓的定義,知SKIPIF1<0,即選項(xiàng)A正確;對(duì)于B:橢圓C的離心率SKIPIF1<0,即選項(xiàng)B錯(cuò)誤;對(duì)于C:設(shè)SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0(舍)即該方程組無(wú)解,即不存在點(diǎn)A使得SKIPIF1<0,即選項(xiàng)C錯(cuò)誤;對(duì)于D:當(dāng)點(diǎn)A為上、下頂點(diǎn)時(shí),SKIPIF1<0的面積取得最大值,即SKIPIF1<0,即選項(xiàng)D正確.故選:AD.12.(2023春·江蘇南通·高三校聯(lián)考)已知定義在R上函數(shù)SKIPIF1<0的圖象是連續(xù)不斷的,且滿足以下條件:①SKIPIF1<0;②SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),都有SKIPIF1<0;③SKIPIF1<0,下列選項(xiàng)成立的是(
)A.SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,使得SKIPIF1<0【答案】ACD【解析】由①SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0為偶函數(shù),②SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),都有SKIPIF1<0,得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,故A正確;SKIPIF1<0即SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故B錯(cuò)誤;由SKIPIF1<0,得SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0,故C正確;由SKIPIF1<0為R上的偶函數(shù),在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,又因?yàn)楹瘮?shù)SKIPIF1<0的圖象是連續(xù)不斷的,所以SKIPIF1<0為SKIPIF1<0的最大值,所以SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,故D正確.故選:ACD三、填空題13.(2023·高三課時(shí)練習(xí))如圖,在三棱錐SKIPIF1<0中,底面邊長(zhǎng)與側(cè)棱長(zhǎng)均為SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0,SKIPIF1<0上的點(diǎn),且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0【解析】SKIPIF1<
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中小學(xué)學(xué)生過(guò)程性評(píng)價(jià)工具設(shè)計(jì)與數(shù)據(jù)統(tǒng)計(jì)分析考核試卷
- 項(xiàng)目公司和政府簽的協(xié)議書(shū)
- 銀行 合作協(xié)議書(shū)
- 肉狗回收協(xié)議書(shū)
- qq協(xié)議書(shū) 易語(yǔ)言
- 西門(mén)子modbus協(xié)議書(shū)
- 零售餐飲服務(wù)業(yè)預(yù)付卡積分兌換協(xié)議
- 工地大型地基施工方案
- 環(huán)評(píng)咨詢定制方案模板
- 咨詢貸款方案有哪些類型
- 中國(guó)法律史-第一次平時(shí)作業(yè)-國(guó)開(kāi)-參考資料
- 《建筑平立剖面》課件
- 思想政治教育專業(yè)大學(xué)生職業(yè)生涯規(guī)劃書(shū)
- 租賃手機(jī)項(xiàng)目融資方案
- 徐匯區(qū)智能魚(yú)池施工方案
- 初中物理八年級(jí)下冊(cè)7.3重力市公開(kāi)課一等獎(jiǎng)省優(yōu)質(zhì)課賽課一等獎(jiǎng)?wù)n件
- 麻醉科醫(yī)療質(zhì)量考核標(biāo)準(zhǔn)及檢查表
- 湘教版高一地理新教材《4.1水循環(huán)》公開(kāi)課一等獎(jiǎng)?wù)n件省賽課獲獎(jiǎng)?wù)n件
- 高中英語(yǔ)課外閱讀:The Picture of Dorian Gray道林格雷的畫(huà)像
- 新概念1-50課語(yǔ)法復(fù)習(xí)
- 福建省退役軍人參加學(xué)歷教育身份確認(rèn)表
評(píng)論
0/150
提交評(píng)論