




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
One-andtwo-dimensionalAndersonmodelwithlong-rangecorrelated-disorder一維和二維關(guān)聯(lián)無(wú)序安德森模型
One-andtwo-dimensionalAndersonmodelwithlong-rangecorrelated-disorderAndersonmodel-IntroductionEntanglementin1D2DEntanglement2Dconductance2Dtransmission2DmagnetoconductanceAndersonmodel-IntroductionWhatisadisorderedsystem?Nolong-rangetranslationalorderTypesofdisorder
(a)crystal(b)Componentdisorder(c)positiondisorder(d)topologicaldisorder
diagonaldisorder
off-diagonaldisordercompletedisorderLocalizationprediction:anelectron,whenplacedinastrongdisorderedlattice,willbeimmobile[1]P.W.Anderson,Phys.Rev.109,1492(1958).
Andersonmodel-IntroductionByP.W.Andersonin1958[1]Andersonmodel-IntroductionIn1983and1984Johnextendedthelocalizationconceptsuccessfullytotheclassicalwaves,suchaselasticwaveandopticalwave[1].Followingthepreviousexperimentalwork,TalSchwartzetal.realizedtheAndersonlocalizationwithdisorderedtwo-dimensionalphotoniclattices[2].[1]JohnS,SompolinskyHandStephenMJ1983Phys.Rev.B275592;JohnSandStephenMJ1983286358;JohnS1984Phys.Rev.Lett.
532169[2]SchwartzTal,BartalGuy,FishmanShmuelandSegev
Mordechai2007Nature
44652Andersonmodel-openproblemsAbrahansetal.’sscalingtheoryforlocalizationin1979[1](3000citations,oneofthemostimportantpapersincondensedmatterphysics)
Predictions(1)nometal-insulatortransitionin2ddisorderedsystemsSupportedbyexperimentsinearly1980s.
(2)(dephasingtime
)ResultsofJ.J.Linin1987[2]
[1]E.Abrahans,P.W.Anderson,D.C.LicciardelloandT.V.Ramakrisbnan,Phys.Rev.Lett.42,673(1979)[2]J.J.LinandN.Giorano,Phys.Rev.B35,1071(1987);J.J.LinandJ.P.Bird,J.Phys.:Condes.Matter14,R501(2002).
ResultsofJ.J.Linin1987[2]dephasingtimeWorkofHui
Xuetal.onsystemswithcorrelateddisorder:劉小良,徐慧,等,物理學(xué)報(bào),55(5),2493(2006);劉小良,徐慧,等,物理學(xué)報(bào),55(6),2949(2006);徐慧,等,物理學(xué)報(bào),56(2),1208(2007);徐慧,等,物理學(xué)報(bào),56(3),1643(2007);馬松山,徐慧,等,物理學(xué)報(bào),56(5),5394(2007);馬松山,徐慧,等,物理學(xué)報(bào),56(9),5394(2007)。Andersonmodel-newpointsofview1。CorrelateddisorderCorrelationanddisorderaretwoofthemostimportantconceptsinsolidstatephysicsPower-lawcorrelateddisorderGaussiancorrelateddisorder2。Entanglement[1]:anindexformetal-insulator,localization-delocalizationtransition”entanglementisakindofunlocalcorrelation”(MPLB19,517,2005).Entanglementofspinwavefunctions:fourstatesinonesite:0spin;1up;1down;1upand1downEntanglementofspatialwavefunctions(spinlessparticle):twostates:occupiedorunoccupiedMeasuresofentanglement:vonNewmannentropyandconcurrence[1]HaibinLiandXiaoguangWang,Mod.Phys.Lett.B19,517(2005);Junpeng
Cao,GangXiong,YupengWang,X.R.Wang,Int.J.Quant.Inform.4,705(2006).HefengWangandSabreKais,Int.J.Quant.Inform.4,827(2006).
Andersonmodel-newpointsofview3.newapplications(1)quantumchaos(2)electrontransportinDNAchainsTheimportanceoftheproblemoftheelectrontransportinDNA[1](3)pentacene[2](并五苯)MolecularelectronicsOrganicfield-effect-transistorspentacene:layeredstructure,2DAndersonsystem[1]R.G.Endres,D.L.CoxandR.R.P.Singh,Rev.Mod.Phys.76,195(2004);
StephanRoche,Phys.Rev.Lett.91,108101(2003).[2]M.UngeandS.Stafstrom,SyntheticMetals,139(2003)239-244;J.Cornil,J.Ph.CalbertandJ.L.Bredas,J.Am.Chem.Soc.,123,1520-1521(2001).
DNAstructureEntanglementinone-dimensionalAndersonmodelwithlong-rangecorrelateddisorder
one-dimensionalnearest-neighbortight-bindingmodelConcurrence:vonNeumannentropy
Left.TheaverageconcurrenceoftheAndersonmodelwithpower-lawcorrelationasthefunctionofdisorderdegreeWandforvarious.Abandstructureisdemonstrated.Right.TheaverageconcurrenceoftheAndersonmodelwithpower-lawcorrelationfor=3.0andatthebiggerWrange.Ajumpingfromtheupperbandtothelowerbandisshown
2DentanglementMethod:takingthe2Dlatticeas1Dchain[1]LongyanGongandPeiqingTong,Phys.Rev.E74(2006)056103.;Phys.Rev.A71,042333(2005).
Quantumsmallworldnetworkin[1]squarelatticeLeft.TheaverageconcurrenceoftheAndersonmodelwithpower-lawcorrelationasthefunctionofdisorderdegreeWandforvarious.Abandstructureisdemonstrated.Right.TheaveragevonNewmannentropyoftheAndersonmodelwithpower-lawcorrelationasthefunctionofdisorderdegreeWandforvarious.Abandstructureisdemonstrated.LonczosmethodEntanglementinDNAchainguanine(G),adenine(A),cytosine(C),thymine(T)QusiperiodicalmodelR-Smodeltogeneratethequsiperiodicalsequencewithfourelements(G,C,A,T).Theinflation(substitutions)ruleisG→GC;C→GA;A→TC;T→TA.StartingwithG(thefirstgeneration),thefirstseveralgenerationsareG,GC,GCGA,GCGAGCTC,GCGAGCTCGCGATAGA???.LetFitheelement(site)numberoftheR-Ssequenceintheithgeneration,wehaveFi+1=2Fifori>=1.Sothesitenumberofthefirstseveralgenerationsare1,2,4,8,16,???,andforthe12thgeneration,thesitenumberis2048.TheaverageconcurrenceoftheAndersonmodelfortheDNAchainasthefunctionofsitenumber.Theresultsarecomparedwiththeuncorrelateduniformdistributioncase.
SpinEntanglementofnon-interactingmultipleparticles:Green’sfunctionmethodFinitetemperaturetwobodyGreen’sfunctionOneparticledensitymatrixandOnebodyGreen’sfunctionTwoparticledensitymatrixwhere,HFapprox.
Ifandwhere&whereGeneralizedWernerStatethenInbasisSeparabilitycriterion=PPT=alwayssatisfiedsinceConductanceandmagnetoconductanceoftheAndersonmodelwithlong-rangecorrelateddisorder(1)Staticconductanceofthetwo-dimensionalquantumdotswithlong-rangecorrelateddisorder
Idea:thedistributionfunctionoftheconductanceinthelocalizedregime1d:clearGaussian2d:unclearMethodtocalculatingtheconductance:Green’sfunctionandKuboformulaFig.1Fig.2aFig.2bFig.1ConductanceasthefunctionofFermienergyforthesystemswithpower-lawcorrelateddisorder(W=1.5)forvariousexponent.Ther
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江西南昌市勞動(dòng)保障事務(wù)代理中心招聘勞務(wù)派遣人員6人考前自測(cè)高頻考點(diǎn)模擬試題附答案詳解(模擬題)
- 2025-2026學(xué)年云南省臨滄市部分學(xué)校高三上學(xué)期開學(xué)考試英語(yǔ)試題(解析版)
- 少數(shù)民族醫(yī)藥保護(hù)利用承諾書(8篇)
- 2025江蘇蘇州市相城招商(集團(tuán))有限公司人員招聘模擬試卷及答案詳解(有一套)
- 提升能源利用效率行動(dòng)計(jì)劃責(zé)任書8篇
- 2025北京中國(guó)音樂學(xué)院高層次人才引進(jìn)2人考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(考點(diǎn)梳理)
- 山東省威海市2024-2025學(xué)年高一下學(xué)期期末考試地理試題(解析版)
- 山東省東明縣2024-2025學(xué)年高二上學(xué)期開學(xué)地理試題(解析版)
- 遼寧省部分高中聯(lián)考2024-2025學(xué)年高一下學(xué)期7月期末地理試題(解析版)
- 保護(hù)環(huán)境從我做起-話題作文15篇
- GB/T 16150-2025農(nóng)藥篩析試驗(yàn)方法
- 遼寧2025自考生物醫(yī)藥數(shù)據(jù)科學(xué)生物信息學(xué)選擇題專練
- 2025年全國(guó)保密教育線上培訓(xùn)考試試題庫(kù)附參考答案
- 建筑施工安全管理制度范本
- 2025公安招聘輔警考試筆試題及答案(完整版)
- 美國(guó)建筑文化介紹
- 2025年專升本政治試題真題及答案
- 變壓器及配電室建設(shè)項(xiàng)目可行性研究報(bào)告
- 交通運(yùn)輸企業(yè)股權(quán)合作方案
- 幽門螺桿菌課件
- 智能無(wú)障礙就業(yè)服務(wù)助力殘障人士就業(yè)的可行性分析
評(píng)論
0/150
提交評(píng)論