




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ReviewofLinearAlgebra
IntroductiontoMatlabMachineLearningGroup
Fall2014OutlineLinearAlgebraBasicsMatrixCalculusSingularValueDecomposition(SVD)EigenvalueDecompositionLow-rankMatrixInversionMatlabessentialsBasicconceptsVectorinRnisanorderedsetofnrealnumbers.e.g.v=(1,6,3,4)isinR4Acolumnvector:Arowvector:m-by-nmatrixisanobjectinRmxnwithmrowsandncolumns,eachentryfilledwitha(typically)realnumber:BasicconceptsVectornorms:Anormofavector||x||isinformallyameasureofthe“l(fā)ength”ofthevector.Commonnorms:L1,L2(Euclidean)LinfinityBasicconceptsVectordot(inner)product:Vectorouterproduct:WewilluselowercaselettersforvectorsTheelementsarereferredbyxi.Ifu?v=0,||u||2!=0,||v||2!=0
uandvareorthogonalIfu?v=0,||u||2=1,||v||2=1
uandvareorthonormalBasicconceptsMatrixproduct:Wewilluseuppercaselettersformatrices.TheelementsarereferredbyAi,j.e.g.Specialmatricesdiagonalupper-triangulartri-diagonallower-triangularI(identitymatrix)BasicconceptsTranspose:Youcanthinkofitas“flipping”therowsandcolumns OR“reflecting”vector/matrixonlinee.g.Linearindependence(u,v)=(0,0),i.e.thecolumnsarelinearlyindependent.Asetofvectorsislinearlyindependentifnoneofthemcanbewrittenasalinearcombinationoftheothers.Vectorsv1,…,vkarelinearlyindependentifc1v1+…+ckvk=0impliesc1=…=ck=0e.g.x3=?2x1+x2SpanofavectorspaceIfallvectorsinavectorspacemaybeexpressedaslinearcombinationsofasetofvectorsv1,…,vk,thenv1,…,vk
spansthespace.Thecardinalityofthissetisthedimensionofthevectorspace.Abasisisamaximalsetoflinearlyindependentvectorsandaminimalsetofspanningvectorsofavectorspace(0,0,1)(0,1,0)(1,0,0)e.g.RankofaMatrixrank(A)(therankofam-by-nmatrixA)isThemaximalnumberoflinearlyindependentcolumns=Themaximalnumberoflinearlyindependentrows=Thedimensionofcol(A)=Thedimensionofrow(A)IfAisnbym,thenrank(A)<=min(m,n)Ifn=rank(A),thenAhasfullrowrankIfm=rank(A),thenAhasfullcolumnrankInverseofamatrix
InverseofasquarematrixA,denotedbyA-1istheuniquematrixs.t.AA-1=A-1A=I(identitymatrix)
IfA-1andB-1exist,then(AB)-1=B-1A-1,(AT)-1=(A-1)T
FororthonormalmatricesFordiagonalmatricesDimensionsByThomasMinka.OldandNewMatrixAlgebraUsefulforStatisticsExamples/
SingularValueDecomposition
(SVD)AnymatrixAcanbedecomposedasA=UDVT,whereDisadiagonalmatrix,withd=rank(A)non-zeroelements ThefistdrowsofUareorthogonalbasisforcol(A)ThefistdrowsofVareorthogonalbasisforrow(A)ApplicationsoftheSVDMatrixPseudoinverseLow-rankmatrixapproximationEigenValueDecompositionAnysymmetricmatrixAcanbedecomposedasA=UDUT,where
Disdiagonal,withd=rank(A)non-zeroelementsThefistdrowsofUareorthogonalbasisforcol(A)=row(A)Re-interpretingAb
Firststretchbalongthedirectionofu1byd1timesThenfurtherstretchitalongthedirectionofu2byd2timesLow-rankMatrixInversionInmanyapplications(e.g.linearregression,Gaussianmodel)weneedtocalculatetheinverseofcovariancematrixXTX(eachrowofn-by-mmatrixXisadatasample)Ifthenumberoffeaturesishuge(e.g.eachsampleisanimage,#samplen<<#featurem)invertingthem-by-mXTXmatrixbecomesanproblemComplexityofmatrixinversionisgenerallyO(n3)Matlabcancomfortablysolvematrixinversionwithm=thousands,butnotmuchmorethanthatLow-rankMatrixInversion
WiththehelpofSVD,weactuallydoNOTneedtoexplicitlyinvertXTXDecomposeX=UDVTThenXTX=VDUTUDVT=VD2VTSinceV(D2)VTV(D2)-1VT=IWeknowthat(XTX)-1=V(D2)-1VTInvertingadiagonalmatrixD2istrivial/
BasicsDerivativesDecompositionsDistributions…MATrixLABoratoryMostlyusedformathematicallibrariesVeryeasytodomatrixmanipulationinMatlabIfthisisyourfirsttimeusingMatlabStronglysuggestyougothroughthe“GettingStarted”partofMatlabhelpManyusefulbasicsyntaxMakingArrays%Asimplearray>>[12345]ans:12345>>[1,2,3,4,5]ans:12345>>v=[1;2;3;4;5]v=12345
>>v’ ans:12345>>1:5ans:12345>>1:2:5ans:135>>5:-2:1ans:531>>rand(3,1)ans:0.03180.27690.0462MakingMatrices%Allthefollowingareequivalent>>[123;456;789]>>[1,2,3;4,5,6;7,8,9]>>[[12;45;78][3;6;9]]>>[[123;456];[789]]ans: 123 456 789MakingMatrices%Creatingallones,zeros,identity,diagonalmatrices>>zeros(rows,cols)>>ones(rows,cols)>>eye(rows)>>diag([123])%CreatingRandommatrices>>rand(rows,cols)%Unif[0,1]>>randn(rows,cols)%N(0,1)%Make3x5withN(1,4)entries>>2*randn(3,5)+1%Getthesize>>[rows,cols]=size(matrix);AccessingElementsUnlikeC-likelanguages,indicesstartfrom1(NOT0)>>A=[123;456;789]ans: 123 456 789%AccessIndividualElements>>A(2,3)ans:6%Access2ndcolumn(:meansallelements)>>A(:,2)ans: 2 5 8AccessingElementsA= 123 456 789Matlabhascolumn-order>>A([1,3,5]) ans:175>>A([1,3],2:end)ans: 23 89>>A(A>5)=-1ans: 123 45-1 -1-1-1>>A(A>5)=-1ans:7869>>[ij]=find(A>5)i=3j= 13 22 33 3MatrixOperationsA= 123 456 789>>A+2*(A/4)ans: 1.50003.00004.5000 6.00007.50009.0000 10.500012.000013.5000>>A./Aans: 111 111 111>>A’>>A*AissameasA^2>>A.*B>>inv(A)>>A/B,A./B,A+B,…%SolvingSystems(A+eye(3))\[1;2;3]%inv(A+eye(3))*[1;2;3]ans: -1.0000 -0.0000 1.0000PlottinginMatlab%LetsplotaGauss
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030兒童認知發(fā)育評估量表的標準化與臨床應用驗證
- 2025-2030兒童神經(jīng)發(fā)育生物標志物檢測試劑盒的產(chǎn)業(yè)化進程與壁壘
- 2025-2030兒童注意力缺陷多動障礙非藥物療法市場增長預測
- 2025-2030兒童早期發(fā)展心理學研究與應用前景探討
- 2025-2030兒童心理咨詢服務市場規(guī)范化發(fā)展現(xiàn)狀調(diào)研
- 2025-2030健身工作室小型化器材需求與空間設計關(guān)聯(lián)性
- 2025-2030健康管理服務數(shù)字化轉(zhuǎn)型與商業(yè)模式創(chuàng)新調(diào)研報告
- 2025-2030供應鏈金融科技發(fā)展趨勢與風險管理策略分析報告
- 2025-2030傳統(tǒng)節(jié)氣飲食對兒童晝夜節(jié)律基因表達的干預潛力
- 2025-2030傳統(tǒng)木作工藝非遺傳承市場調(diào)研報告
- 如何預防呼吸機相關(guān)性肺炎
- 電商文案寫作教學課件
- 思想政治教育與科學技術(shù)的融合創(chuàng)新
- 腦梗死中西醫(yī)結(jié)合診療指南
- 替代工藝管理辦法
- 2025年臨沂考輔警筆試題及答案
- 殷商甲骨占卜制度-洞察及研究
- 多孔中空球形二氧化硅行業(yè)深度研究分析報告(2024-2030版)
- 膽管炎護理疑難病例討論
- 2025至2030年中國洗護用品行業(yè)市場行情監(jiān)測及前景戰(zhàn)略研判報告
- 無人機操控與維護專業(yè)教學標準(中等職業(yè)教育)2025修訂
評論
0/150
提交評論