




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精PAGE17學(xué)必求其心得,業(yè)必貴于專精PAGE5.1平行關(guān)系的判定學(xué)習(xí)目標(biāo)1.理解直線與平面平行、平面與平面平行的判定定理的含義。2。會(huì)用圖形語言、文字語言、符號(hào)語言準(zhǔn)確描述直線與平面平行、平面與平面平行的判定定理,并知道其地位和作用。3。能運(yùn)用直線與平面平行的判定定理、平面與平面平行的判定定理證明一些空間線面關(guān)系的簡(jiǎn)單問題.知識(shí)點(diǎn)一直線與平面平行的判定定理思考如圖,一塊矩形木板ABCD的一邊AB在平面α內(nèi),把這塊木板繞AB轉(zhuǎn)動(dòng),在轉(zhuǎn)動(dòng)過程中,AB的對(duì)邊CD(不落在α內(nèi))和平面α有何位置關(guān)系?梳理判定定理表示定理圖形文字符號(hào)直線與平面平行的判定定理若平面外一條直線與____________________________,則該直線與此平面平行eq\b\lc\\rc\}(\a\vs4\al\co1(aα,bα,a∥b))?a∥α知識(shí)點(diǎn)二平面與平面平行的判定定理思考1三角板的一條邊所在平面與平面α平行,這個(gè)三角板所在平面與平面α平行嗎?思考2三角板的兩條邊所在直線分別與平面α平行,這個(gè)三角板所在平面與平面α平行嗎?梳理判定定理表示定理圖形文字符號(hào)平面與平面平行的判定定理如果一個(gè)平面內(nèi)的______________都平行于另一個(gè)平面,那么這兩個(gè)平面平行eq\b\lc\\rc\}(\a\vs4\al\co1(aβ,bβ,,a∥α,b∥α))?α∥β類型一直線與平面平行的判定問題eq\x(命題角度1以錐體為背景證明線面平行)例1如圖,S是平行四邊形ABCD所在平面外一點(diǎn),M,N分別是SA,BD上的點(diǎn),且eq\f(AM,SM)=eq\f(DN,NB)。求證:MN∥平面SBC.引申探究本例中若M,N分別是SA,BD的中點(diǎn),試證明MN∥平面SBC。反思與感悟利用直線與平面平行的判定定理證線面平行的步驟上面的第一步“找”是證題的關(guān)鍵,其常用方法有:利用三角形、梯形中位線的性質(zhì);利用平行四邊形的性質(zhì);利用平行線分線段成比例定理.跟蹤訓(xùn)練1在四面體A-BCD中,M,N分別是△ACD,△BCD的重心,則四面體的四個(gè)面中與MN平行的是________.eq\x(命題角度2以柱體為背景證明線面平行)例2如圖,在三棱柱ABC-A1B1C1中,D,E,F分別是棱AB,BC,A1C1的中點(diǎn),求證:EF∥平面A1CD。反思與感悟證明以柱體為背景包裝的線面平行證明題時(shí),常用線面平行的判定定理,遇到題目中含有線段中點(diǎn)時(shí),常利用取中點(diǎn)去尋找平行線.跟蹤訓(xùn)練2如圖所示,已知長(zhǎng)方體ABCD-A1B1C1D1.(1)求證:BC1∥平面AB1D1;(2)若E,F(xiàn)分別是D1C,BD的中點(diǎn),求證:EF∥平面ADD1A1.類型二平面與平面平行的判定例3如圖所示,在三棱柱ABC-A1B1C1中,E,F,G,H分別是AB,AC,A1B1,A1C1的中點(diǎn),求證:(1)B,C,H,G四點(diǎn)共面;(2)平面EFA1∥平面BCHG.反思與感悟判定平面與平面平行的四種常用方法(1)定義法:證明兩個(gè)平面沒有公共點(diǎn),通常采用反證法.(2)利用判定定理:一個(gè)平面內(nèi)的兩條相交直線分別平行于另一個(gè)平面.證明時(shí)應(yīng)遵循先找后作的原則,即先在一個(gè)平面內(nèi)找到兩條與另一個(gè)平面平行的相交直線,若找不到再作輔助線.(3)轉(zhuǎn)化為線線平行:平面α內(nèi)的兩條相交直線與平面β內(nèi)的兩條相交直線分別平行,則α∥β.(4)利用平行平面的傳遞性:若α∥β,β∥γ,則α∥γ.跟蹤訓(xùn)練3如圖所示,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點(diǎn),設(shè)Q是CC1上的點(diǎn),問:當(dāng)點(diǎn)Q在什么位置時(shí),平面D1BQ∥平面PAO?1.在正方體ABCD-A′B′C′D′中,E,F分別為平面ABCD和平面A′B′C′D′的中心,則正方體的六個(gè)面中與EF平行的平面有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)2.過直線l外兩點(diǎn),作與l平行的平面,則這樣的平面()A.不可能作出B.只能作出一個(gè)C.能作出無數(shù)個(gè)D.上述三種情況都存在3.在正方體EFGH-E1F1G1H1中,下列四對(duì)截面彼此平行的一對(duì)是()A.平面E1FG1與平面EGH1B.平面FHG1與平面F1H1GC.平面F1H1H與平面FHE1D.平面E1HG1與平面EH1G4.經(jīng)過平面α外兩點(diǎn),作與α平行的平面,則這樣的平面可以作()A.1個(gè)或2個(gè) B.0個(gè)或1個(gè)C.1個(gè) D.0個(gè)5.如圖,四棱錐P-ABCD中,AB=AD,∠BAD=60°,CD⊥AD,F(xiàn)、E分別是PA,AD的中點(diǎn),求證:平面PCD∥平面FEB.1.直線與平面平行的關(guān)鍵是在已知平面內(nèi)找一條直線和已知直線平行,即要證直線和平面平行,先證直線和直線平行,即由立體向平面轉(zhuǎn)化,由高維向低維轉(zhuǎn)化.2.證明面面平行的一般思路:線線平行?線面平行?面面平行.3.準(zhǔn)確把握線面平行及面面平行兩個(gè)判定定理,是對(duì)線面關(guān)系及面面關(guān)系作出正確推斷的關(guān)鍵.答案精析問題導(dǎo)學(xué)知識(shí)點(diǎn)一思考平行.梳理此平面內(nèi)一條直線平行知識(shí)點(diǎn)二思考1不一定.思考2平行.梳理兩條相交直線a∩b=P題型探究例1證明連接AN并延長(zhǎng)交BC于點(diǎn)P,連接SP.因?yàn)锳D∥BC,所以eq\f(DN,NB)=eq\f(AN,NP),又因?yàn)閑q\f(AM,SM)=eq\f(DN,NB),所以eq\f(AM,SM)=eq\f(AN,NP),所以MN∥SP,又MN平面SBC,SP平面SBC,所以MN∥平面SBC。引申探究證明連接AC,由平行四邊形的性質(zhì)可知,AC必過BD的中點(diǎn)N,在△SAC中,M,N分別為SA,AC的中點(diǎn),MN∥SC,又因?yàn)镾C平面SBC,MN?平面SBC,所以MN∥平面SBC.跟蹤訓(xùn)練1平面ABD與平面ABC解析如圖,取CD的中點(diǎn)E,連接AE,BE.則EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB。又AB平面ABD,MN平面ABD,所以MN∥平面ABD,同理,AB平面ABC,MN平面ABC,所以MN∥平面ABC。例2證明∵在三棱柱ABC-A1B1C1中,F(xiàn)為A1C1的中點(diǎn),∴A1F綊eq\f(1,2)AC,∵D、E分別是棱AB,BC的中點(diǎn),∴DE綊eq\f(1,2)AC,∴A1F綊DE,則四邊形A1DEF為平行四邊形,∴EF∥A1D.又EF平面A1CD且A1D平面A1CD,∴EF∥平面A1CD。跟蹤訓(xùn)練2證明(1)∵BC1平面AB1D1,AD1平面AB1D1,BC1∥AD1,∴BC1∥平面AB1D1.(2)∵點(diǎn)F為BD的中點(diǎn),∴F為AC的中點(diǎn),又∵點(diǎn)E為D1C的中點(diǎn),∴EF∥AD1,∵EF平面ADD1A1,AD1平面ADD1A1,∴EF∥平面ADD1A1.例3證明(1)因?yàn)镚,H分別是A1B1,A1C1的中點(diǎn),所以GH是△A1B1C1的中位線,所以GH∥B1C1.又因?yàn)锽1C1∥BC,所以GH∥BC,所以B,C,H,G四點(diǎn)共面.(2)因?yàn)镋,F分別是AB,AC的中點(diǎn),所以EF∥BC。因?yàn)镋F平面BCHG,BC平面BCHG,所以EF∥平面BCHG。因?yàn)锳1G∥EB,A1G=EB,所以四邊形A1EBG是平行四邊形,所以A1E∥GB.因?yàn)锳1E平面BCHG,GB平面BCHG,所以A1E∥平面BCHG.因?yàn)锳1E∩EF=E,所以平面EFA1∥平面BCHG。跟蹤訓(xùn)練3解當(dāng)Q為CC1的中點(diǎn)時(shí),平面D1BQ∥平面PAO.∵Q為CC1的中點(diǎn),P為DD1的中點(diǎn),連接PQ,如圖,易證四邊形PQBA是平行四邊形,∴QB∥PA.又∵AP平面APO,QB平面APO,∴QB∥平面APO?!逷,O分別為DD1,DB的中點(diǎn),∴D1B∥PO。同理可得D1B∥平面PAO,又D1B∩QB=B,∴平面D1BQ∥平面PAO。當(dāng)堂訓(xùn)練1.D2。D3.A4。B5.證明連接BD,在△ABD中,∠BAD=60°,AB=AD,∴△ABD是等邊三角形,E為AD的中點(diǎn),∴BE⊥AD,又CD⊥AD,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省棗莊市2024-2025學(xué)年高一下學(xué)期期末地理試題(解析版)
- 2025遼寧省農(nóng)業(yè)科學(xué)院赴高校招聘31人模擬試卷及參考答案詳解
- 特定活動(dòng)場(chǎng)地租賃合同協(xié)議
- 2025年上海市城市規(guī)劃設(shè)計(jì)研究院招聘高層次專業(yè)技術(shù)人員考前自測(cè)高頻考點(diǎn)模擬試題完整答案詳解
- 2025年福建省寧德市營商環(huán)境觀察員招募3人模擬試卷及答案詳解(典優(yōu))
- 誠實(shí)守信義務(wù)承諾書6篇
- 2025年昆侖數(shù)智科技有限責(zé)任公司招聘(15人)模擬試卷附答案詳解(考試直接用)
- 業(yè)務(wù)洽談與合同簽訂指南模板
- 2025河南鄭州大學(xué)招聘500人考前自測(cè)高頻考點(diǎn)模擬試題及答案詳解(易錯(cuò)題)
- 2025甘肅特崗教師招聘考試幾月份發(fā)布?模擬試卷及一套完整答案詳解
- 2025北京市交通發(fā)展年度報(bào)告
- 工程造價(jià)軟件應(yīng)用 課件 第2章 廣聯(lián)達(dá)BIM土建計(jì)量平臺(tái)應(yīng)用
- 2025成人高等學(xué)校專升本招生統(tǒng)一考試政治試題及答案解析
- 車間頂防火改造方案(3篇)
- 新技術(shù)耳石復(fù)位申請(qǐng)書
- 2025年成人高考專升本《政治》真題及答案(網(wǎng)友回憶版)
- 髓母細(xì)胞瘤護(hù)理查房
- 急性缺血性卒中再灌注治療指南解讀
- 國防動(dòng)員課件模板
- 機(jī)電安裝工程施工重點(diǎn)難點(diǎn)及應(yīng)對(duì)措施
- 《第十三屆全國交通運(yùn)輸行業(yè)機(jī)動(dòng)車駕駛教練員職業(yè)技能大賽理論題庫(540題)》
評(píng)論
0/150
提交評(píng)論