智能控制(英文)_第1頁
智能控制(英文)_第2頁
智能控制(英文)_第3頁
智能控制(英文)_第4頁
智能控制(英文)_第5頁
已閱讀5頁,還剩72頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

IntelligentControlLecturer:王學(xué)泰GroupMembers:王學(xué)泰李媛張玉磊2011-04-021太原理工大學(xué)謝剛Dr.GangXie,TUT1INTRODUCTIONWithincreasingdemandsforhighprecisionautonomouscontroloverwideoperatingenvelopes,conventionalcontrol(傳統(tǒng)控制)

engineeringapproachesareunabletoadequatelydealwithsystemcomplexity(復(fù)雜性),nonlinearities(非線性),spatial(多維)andtemporalparametervariations(多參數(shù)),andwithuncertainty(不確定).

IntelligentControlorself-organising/learningcontrolisanewemergingdisciplinethatisdesignedtodealwithproblems.Ratherthanbeingmodelbased,itisexperientialbased(基于經(jīng)驗而不是模型).

IntelligentControlistheamalgamofthedisciplinesofArtificialIntelligence人工智能,SystemsTheory系統(tǒng)論andOperationsResearch運籌學(xué)Intelligentcontroldescribesthedisciplinewherecontrolmethodsaredevelopedthatattempt

toemulate(模擬

)importantcharacteristicsofhumanintelligence.Thesecharacteristicsincludeadaptationandlearning,planningunderlargeuncertaintyandcopingwithlargeamountsof

data.CharacteristicsofIntelligentSystemsAdaptation自適應(yīng)andLearning再學(xué)習(xí):

Theabilitytoadapttochangingconditionsisecessaryinan

intelligentsystem.Althoughadaptationdoesnotnecessarilyrequiretheabilitytolearn,for

systemstobeabletoadapttoawidevarietyofunexpectedchangeslearningisessential.So

theabilitytolearnisanimportantcharacteristicof(highly)intelligentsystems.Autonomy自治性

andIntelligence智能性:

Autonomyinsettingandachievinggoalsisanimportan

characteristicofintelligentcontrolsystems.Whenasystemhastheabilitytoac

appropriatelyinanuncertainenvironmentforextendedperiodsoftimewithoutexternal

interventionitisconsideredtobehighlyautonomous.StructuresandHierarchies分級遞階:

Inordertocopewithcomplexity,anintelligentsystemmust

haveanappropriatefunctionalarchitectureorstructureforefficientanalysisandevaluation

ofcontrolstrategies.Fuzzy(logic)Control模糊(邏輯)控制ANN-BasedControl(ArtificialNeuralNetwork)基于人工神經(jīng)網(wǎng)絡(luò)的控制ExpertControl專家控制GeneticAlgorithm遺傳算法Intelligentcontrolcanbedividedintothefollowingmajorsub-domains:summary:Thecollectionofmethodologiescomprisingsoftcomputingincludee.g.fuzzylogic,neuralnetworks(neurocomputing)andgeneticalgorithms.Theseareoftencomplementaryratherthancompetingmethodologiesandcanoftenbecombinedinordertocreateintelligentsystems.Thestrengthsofthedifferentmethodologiesaresummarizedinthetablebelow.2FuzzyControlFuzzytheorybeganwithapaperon“fuzzysets(模糊集合)”,writtenbyProf.L.A.Zadehin1965.Fuzzysetsarethosesetswhoseboundaryisnotclear.Fuzzylogicsarecalculationproceduresonfuzzysets.Atechnologyinwhichthewholesystemcanberoughlydefined,thatis“fuzzytheory”wasproposed.Afuzzycontrolsystemisacontrolsystembasedonfuzzylogic(模糊邏輯)—amathematicalsystemthatanalyzesanaloginputvaluesintermsoflogicalvariablesthattakeoncontinuousvaluesbetween0and1,incontrasttoclassicalordigitallogic,whichoperatesondiscretevaluesofeither0or1(trueorfalse).2.1FuzzyLogicNormal“Crisp”logic

whereeverythingmustbeeither

TrueorFalse。Fuzzylogicisaformofmany-valuedlogicderivedfromfuzzysettheory(模糊集合理論)todealwithreasoningthatisfluidorapproximateFuzzylogicacknowledgesandexploitsthetoleranceforuncertaintyandimprecision.Thesentenceontheotherside

ofthelineisfalseThesentenceontheotherside

ofthelineisfalselinguisticvariables(語言變量)takeonlinguisticvalues(語言值)whicharewords(linguisticterms)withassociateddegreesof

membership(隸屬度)intheset。

2.2FuzzyControlDesign?INFORM1990-1998 Slide17Fuzzycontrolisamethodologytorepresentandimplementa(smart)human’sknowledgeabout

howtocontrolasystem.AfuzzycontrollerisshowninFigure1.?INFORM1990-1998 Slide18Thefuzzycontrollerhasseveral

components:?Therule-baseisasetofrulesabouthowtocontrol.?Fuzzi?cation(模糊化)istheprocessoftransformingthenumericinputsintoaformthatcanbeused

bytheinferencemechanism.?Theinferencemechanism(推理機)usesinformationaboutthecurrentinputs(formedbyfuzzi?cation),decideswhichrulesapplyinthecurrentsituation,andformsconclusionsaboutwhattheplant

inputshouldbe.?Defuzzi?cation(去模糊化)convertstheconclusionsreachedbytheinferencemechanismintoanumeric

inputfortheplant.MaptoFuzzySetsFuzzyRules

IFAANDBTHENL

*

*DefuzzificationInputsOutputget_inputs();fire_rules();find_output();TermDefinitions:Distance :={far,medium,close,zero,neg_close}Angle :={pos_big,pos_small,zero,neg_small,neg_big}Power :={pos_high,pos_medium,zero,neg_medium,neg_high}2.2.1Fuzzification:

-LinguisticVariables-?INFORM1990-1998 Slide21MembershipFunctionDefinition:TheLinguisticVariablesArethe“Vocabulary”ofaFuzzyLogicSystem!Computationofthe“IF-THEN”-Rules:#1:IFDistance=mediumANDAngle=pos_smallTHENPower=pos_medium#2:IFDistance=mediumANDAngle=zeroTHENPower=zero#3:IFDistance=farANDAngle=zeroTHENPower=pos_medium2.2.2Fuzzy-Inference:

-“IF-THEN”-Rules-?INFORM1990-1998 Slide22Aggregation: Computingthe“IF”-PartComposition: Computingthe“THEN”-PartTheRulesoftheFuzzyLogicSystemsArethe“Laws”ItExecutes!

2.2.3Defuzzification?INFORM1990-1998 Slide23

Defuzzificationistheprocessofproducingaquantifiableresultinfuzzylogic,givenfuzzysetsandcorrespondingmembershipdegrees。?INFORM1990-1998 Slide24summary:Fuzzycontrolistypicallyusedwhentheexplicitsystemanalyticalmodelis

notavailable.

Fuzzycontrolisintuitivetounderstandandeasytodesignfor

engineerswhoareunfamiliarwithclassicalcontroltheory.Afuzzycontroller

canbedesignedbasedone.g.ahumanoperatorsexperience.Fuzzycontrol

consistsofselectingandusing1.acollectionofrulesthatdescribethecontrolstrategy描述控制策略的規(guī)則集合2.membershipfunctionsforthelinguisticvariablesintherules在上述規(guī)則下,表示語言變量的隸屬度函數(shù)3.logicalconnectionsforfuzzyrelations模糊關(guān)系之間的邏輯關(guān)系4.adefuzzicationmethod

去模糊化的方法

3Arti?cialneuralnetwork?INFORM1990-1998 Slide253.1BiologicalapproachtoAIArti?cialneuralnetworksarecircuits,computeralgorithms(計算方法),ormathematicalrepresentationsloosely

inspired(激勵)bythemassivelyconnectedsetofneuronsthatformbiologicalneuralnetworks.

Arti?cial

neuralnetworksareanalternativecomputingtechnologythathaveprovenusefulinavarietyof

patternrecognition(模式識別),signalprocessing(信號處理),estimation,andcontrolproblems.?INFORM1990-1998 Slide26?INFORM1990-1998 Slide27ArtificialneuronsNeuronsworkbyprocessinginformation.Theyreceiveandprovideinformationinformofspikes.?INFORM1990-1998 Slide28ArtificialneuralnetworksAnartificialneuralnetworkiscomposedofmanyartificialneuronsthatarelinkedtogetheraccordingtoaspecificnetworkarchitecture.Theobjectiveoftheneuralnetworkistotransformtheinputsintomeaningfuloutputs.?INFORM1990-1998 Slide293.2LearningProcessesLearning=learningbyadaptationTheyounganimallearnsthatthegreenfruitsaresour,whiletheyellowish/reddishonesaresweet.Thelearninghappensbyadaptingthefruitpickingbehavior.?INFORM1990-1998 Slide301.Learningwithateacher有教師學(xué)習(xí)

(Supervisedlearning)2.Learningwithoutateacher無教師學(xué)習(xí)(UnsupervisedLearning)3.ReinforcemengtLearning再勵學(xué)習(xí)?INFORM1990-1998 Slide31a.Learningwithaperceptron(感知機)Perceptron:Data:Error:Learning:?INFORM1990-1998 Slide32Perceptron:Data:Error:Learning:?INFORM1990-1998 Slide33b.LearningwithRBF(徑向基函數(shù))neuralnetworksOnlythesynapticweightsoftheoutputneuronaremodified.AnRBFneuralnetworklearnsanonlinearfunction.?INFORM1990-1998 Slide34c.LearningwithMLP(多層感知機)neuralnetworks?INFORM1990-1998 Slide35Data:Error:xyout12…p-1p?INFORM1990-1998 Slide36d.Learningwithbackpropagation(BP反向傳播神經(jīng)網(wǎng)絡(luò))Solutionofthecomplicatedlearning:calculatefirstthechangesforthesynapticweightsoftheoutputneuron;calculatethechangesbackwardstartingfromlayerp-1,andpropagatebackwardthelocalerrorterms.?INFORM1990-1998 Slide37e.LearningwithFeed-Forward(前饋)NNx1=x2=x3=Inputsandoutputsarenumeric.?INFORM1990-1998 Slide38

Learningtasksofartificialneuralnetworkscanbereformulatedasfunctionapproximation(函數(shù)逼近)tasks.

Neuralnetworkscanbeconsideredasnonlinearfunctionapproximating(非線性逼近)tools(i.e.,linearcombinationsofnonlinearbasisfunctions),wheretheparametersofthenetworksshouldbefoundbyapplyingoptimisationmethods(最優(yōu)化方法).Theoptimisation(最優(yōu)化)isdonewithrespecttotheapproximationerrormeasure.

Ingeneralitisenoughtohaveasinglehiddenlayer(單隱含層)neuralnetwork(MLP,RBForother)tolearntheapproximationofanonlinearfunction.Insuchcasesgeneraloptimisationcanbeappliedtofindthechangerulesforthesynapticweights.3.3

Training(訓(xùn)練)NeuralNetworks?INFORM1990-1998 Slide39Howdoweconstructaneuralnetwork?Wetrainitwithexamples.Regardlessofthetypeof

network,wewillrefertoitaswhereθisthevectorofparametersthatwetunetoshapethenonlinearityitimplements(Fcould

beafuzzysystemtoointhediscussionbelow).Foraneuralnetworkθwouldbeavectorofthe

weightsandbiases.SometimeswewillcallFan“approximatorstructure.”Supposethatwegather

input-outputtrainingdatafromafunctiony=g(x)thatwedonothaveananalyticalexpression

for(e.g.,itcouldbeaphysicalprocess).?INFORM1990-1998 Slide40TrainingoftheANN(ArtificialNeuralNet)iseffectedby:Startingwithartibrarywieghts(任意權(quán)值)Presentingthedata,instancebyinstance

adaptingtheweightsaccordingtheerrorforeachinstance.Repeatinguntilconvergence(收斂).?INFORM1990-1998 Slide41summaryANNisamassivelyparalleldistributedprocessor(分布式并行處理).1.Simpleprocessingunitsthatcanstoreexperience2.Alearningprocess4ExpertControlSystemsAnexpertcontrolsystemisacomputerprogramthatisdesignedtoholdtheaccumulatedknowledge(累計知識)

ofoneormoredomainexperts4.1ComponentsofanExpertSystemTheknowledgebaseisthecollectionoffactsandruleswhichdescribealltheknowledgeabouttheproblemdomainTheinferenceengineisthepartofthesystemthatchooseswhichfactsandrulestoapplywhentryingtosolvetheuser’squeryTheuserinterfaceisthepartofthesystemwhichtakesintheuser’squeryinareadableformandpassesittotheinferenceengine.Itthendisplaystheresultstotheuser.InterpreterInferenceEngineKnowledgeBasedRulesDatabaseContextSetoffactsNaturalLanguageInterfaceExpertUserExpertSystemStructure(1)KnowledgeBase(知識庫)Representsallthedataandinformationimputedbyexpertsinthefield.Storesthedataasasetofrulesthatthesystemmustfollowtomakedecisions.KnowledgeAcquisitionExpertSystemKnowledgeEngineerHumanExpert

(2)InferenceEngine(推理機)Askstheuserquestionsaboutwhattheyarelookingfor.Appliestheknowledgeandtherulesheldintheknowledgebase.Appropriatelyusesthisinformationtoarriveatadecision.(3)UserInterface(人機界面)Allowstheexpertsystemandtheusertocommunicate.Findsoutwhatitisthatthesystemneedstoanswer.Sendstheuserquestionsoranswersandreceivestheirresponse.4.2CharacteristicswithExpertSystemsThereisnoexpertinthefieldTheexpertisunabletocommunicatehis/herideasTheexpertisunwillingtocommunicatehis/herideasTheexpertisnotavailableMusthaveallinformationonasubjectCanallthetestingbeaccomplished?UseracceptanceAdvantagesofExpertSystemsCanbesimpletouseEfficientresultsAccurateresultsAdaptationandadjustmentstochangingconditionsCosteffectiveProblemswithExpertSystemsLimiteddomainSystemsarenotalwaysuptodate,anddon’tlearnNo“commonsense”Expertsneededtosetupandmaintainsystem5GeneticAlgorithmsAnalgorithmisasetofinstructionsthatisrepeatedtosolveaproblem.Ageneticalgorithmconceptuallyfollowsstepsinspiredbythebiologicalprocessesofevolution.GeneticAlgorithmsfollowtheideaofSURVIVALOFTHEFITTEST-Better(適者生存)andbettersolutionsevolvefrompreviousgenerationsuntilanearoptimalsolutionisobtained.Alsoknownasevolutionaryalgorithms,geneticalgorithmsdemonstrateselforganizationandadaptationsimilartothewaythatthefittestbiologicalorganismsurviveandreproduce.Ageneticalgorithmisaniterativeprocedure(迭次求近)thatrepresentsitscandidatesolutionsasstringsofgenescalledchromosomes(染色體).5.1Individual

Representing(個體表現(xiàn))

Anindividualisdatastructurerepresenting

the“geneticstructure(基因組合)”ofapossiblesolution.Geneticstructureconsistsofanalphabet(usually0,1)BinaryEncoding二進(jìn)制編碼MostCommon–stringofbits,0or1. Chrom:A=1011001011Chrom:B=1111110000GivesyoumanypossibilitiesExampleProblem:KnapsackproblemTheproblem:therearethingswithgivenvalueandsize.Theknapsackhasgivencapacity.Selectthingstomaximizethevalues.Encoding:Eachbitsays,ifthecorrespondingthingisintheknapsackPermutationEncoding排列編碼Usedin“orderingproblems”Everychromosomeisastringofnumbers,whichrepresentsnumberisasequence.ChromA:153264798ChromB:857723149Example:TravellingsalesmanproblemTheproblem:citiesthatmustbevisited.Encodingsaysorderofcitiesinwhichsalesmanwilllvisit.ValueEncoding值編碼Usedforcomplicatedvalues(realnumbers)andwhenbinarycodingwouldbedifficultEachchromosomeisastringofsomevalues.ChromA:1.23235.32430.4556ChromB:abcdjeifjdhdierjfdChromC:(back),(back),(right),(forward),(left)Example:Findingweightsforneuralnets.Theproblem:findweightsfornetworkEncoding:RealvaluesthatrepresentweightsRulebasesystem規(guī)則庫Givenarule(ifcolor=redandsize=smallandshape=roundthenobject=apple.Assumethateachfeaturehasfinitesetofvalues(e.g.,size=small,large)Representthevalueasasubstringoflengthequltothenumberofpossiblevalues.Forexample,small=10,large=01.Theentirerulewouldbe10010010100–setofrulesconcatenatingthevaluestogether.5.2SelectionCriteria(選擇標(biāo)準(zhǔn))Fitnessproportionateselection,rankselectionmethods.

Fitnessproportionate(適應(yīng)度比例法)–eachindividual,I,hastheprobabilityfitness(I)/sum_over_all_individual_jFitness(j),whereFitness(I)isthefitnessfunctionvalueforindividualI.

Rankselection(

隨機抽樣法)–sortsindividualbyfitnessandtheprobabilitythatanindividualwillbeselectedisproportionaltoitsrankinthissortedlist.FitnessFunction(適應(yīng)度函數(shù))Representsarankofthe“representation”Itisusuallyarealnumber.Thefunctionusuallyhasavaluebetween0and1.Onecanhaveasubjectivejudgment(e.g.1-5forrecipe2-1-4.)Similarlythelengthoftherouteinthetravelingsalespersonproblemisagoodmeasure,becausetheshortertheroute,thebetterthesolution.

5.3Reproduction(復(fù)制)Reproduction-Throughreproduction,geneticalgorithmsproducenewgenerationsofimprovedsolutionsbyselectingparentswithhigher

fitnessratings(適應(yīng)度)Crossover(交叉)-Manygeneticalgorithmsusestringsofbinarysymbolsforchromosomes,asinourKnapsackexample,torepresentsolutions.Crossovermeanschoosingarandompositioninthestring(say,after2digits)andexchangingthesegmentseithertotherightortotheleftofthispointwithanotherstringpartitionedsimilarlytoproducetwonewoffspring.CrossoverExampleParentA011011ParentB101100“bysplittingeachnumberasshownbetweenthesecondandthirddigits(positionisrandomlyselected)01*1011 10*1100Mutation(變異)-Mutationisanarbitrarychangeinasituation.Sometimesitisusedtopreventthealgorithmfromgettingstuck.Theprocedurechangesa1toa0,or0toa1.Thischangeoccurswithaverylowprobability(say1in1000)10101111100011Parent1Parent210100111100110Child1Child2MutationMutationandCrossoverCrossoverOperators

Single-pointcrossover:ParentA:10010|11101ParentB:01011|10110ChildAB:1001010110ChildBA:0101111101

Two-pointcrossover:ParentA:1001|011|101

ParentB:0101|110|110ChildAB:1001110101

ChildBA:0101011110UniformCrossoverandMutationUniformcrossover:ParentA:1001011101ParentB:0101110110ChildAB:1101111101

ChildBA:0001010110Mutation:randomlytoggleonebitIndividualA:1001011101IndividualA':1000011101Crossover–PermutationEncodingSinglepointcrossover-onecrossoverpointisselected,tillthispointthepermutationiscopiedfromthefirstparent,thenthesecondparentisscannedandifthenumberisnotyetintheoffspringitisadded

(123456789)+(453689721)=(123456897)Mutation

Orderchanging-twonumbersareselectedandexchanged(123456897)=>(18345629

7)

Crossover–ValueEncodingCrossover

AllcrossoversfrombinaryencodingcanbeusedMutation

Addingasmallnumber(forrealvalueencoding)-toselectedvaluesisadded(or

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論