




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
PAGEPAGE33因數(shù)和倍數(shù)教學反思15篇因數(shù)和倍數(shù)教學反思1本節(jié)課是在學生已經(jīng)學習了一定的整數(shù)知識的基礎上進行教學的。課堂中,我首先讓學生理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。其次,厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。本節(jié)課的不足之處:1.練習設計容量少了一些,導致課堂有剩余時間。2.對因數(shù)和倍數(shù)的含義還應該進行歸納總結(jié)上升到用字母來表示。因數(shù)和倍數(shù)教學反思2我在教學時做到了以下幾點:(1)密切聯(lián)系生活中的數(shù)學,幫助學生理解概念間的關系。今天在教學前,我讓學生學說話,就是培養(yǎng)學生對語言的概括能力和對事物間關系的理解能力。于是我利用課前談話讓學生在找找生活中的相互依存關系,課中遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關系,從而使學生更深一步的認識倍數(shù)與因數(shù)的關系,(2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關系,列出乘法算式,初步感知倍數(shù)關系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學習如何找一個數(shù)的倍數(shù)奠定了良好的基礎。這樣不僅溝通了乘法和除法的關系,也讓學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。(3)根據(jù)學生的實際情況,教學找一個數(shù)的因數(shù)的方法雖然學生不能有序地找出來,但是基本能全部找到,再此基礎上讓體會有序找一個數(shù)因數(shù)的辦法學生容易接受,這樣的設計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。(4)設計有趣游戲活動,擴大學生思維的空間,培養(yǎng)學生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學生思考問題的空間很大,培養(yǎng)了學生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學生判斷自己的學號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),,如果學生的學號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學生都站起來。出示地卡片應該是幾,找的朋友應該是倍數(shù)還是因數(shù)?學生面對問題積極思考,享受了數(shù)學思維的快樂因數(shù)和倍數(shù)教學反思3本節(jié)課的內(nèi)容是在學生已經(jīng)學習了一定的整數(shù)知識(包括整數(shù)的知識、整數(shù)的四則運算及其應用)的基礎上,進一步認識整數(shù)的性質(zhì)。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎知識。成功之處:1.理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。2.厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。不足之處:1.練習設計容量少了一些,導致課堂有剩余時間。2.對因數(shù)和倍數(shù)的含義還應該進行歸納總結(jié)上升到用字母來表示。再教設計:1.根據(jù)課本的練習相應的進行補充。2.因數(shù)和倍數(shù)的含義用總結(jié)為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。因數(shù)和倍數(shù)教學反思4《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內(nèi)容。由于這一單元概念較多,學生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復習課分以下四部分。1、先從自然數(shù)入手,由自然數(shù)的概念讓學生總結(jié)自然數(shù)的個數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實際試著讓學生把自然數(shù)分成奇數(shù)和偶數(shù)。點名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺。2、由偶數(shù)都是2的倍數(shù),復習2的倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的特征。學生邊復習老師邊板書,由于大家共同協(xié)作,很快找出一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結(jié)同時能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學生隨便說一個算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學生列舉乘法或除法算式,準確表達倍數(shù)與因數(shù)的關系,加深了學生對倍數(shù)與因數(shù)相互依存關系的理解和認識。3、隨便給出一個數(shù)找出它的所有因數(shù),得出一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個數(shù)把自然數(shù)分成質(zhì)數(shù)、合數(shù)和1。復習什么是質(zhì)數(shù),什么是合數(shù)。最小的質(zhì)數(shù)是幾,最小的合數(shù)是幾。20以內(nèi)的質(zhì)數(shù)。為什么1既不是質(zhì)數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個數(shù)判斷是質(zhì)數(shù)還是合數(shù),若是合數(shù)讓學生分解質(zhì)因數(shù)。先說分解質(zhì)因數(shù)的方法,然后點名學生板演,教師巡視。指出錯誤。4、帶領學生一起做練習,讓學生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內(nèi)容全面;練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性、趣味性。不足之處是我缺乏個性化的語言評價激活學生的情感,以后需多努力。因數(shù)和倍數(shù)教學反思5教學內(nèi)容:青島版教材小學數(shù)學五年級上冊88—91頁。教學目標:1、使學生初步認識因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)或倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的因數(shù)、倍數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。2、使學生在認識因數(shù)和倍數(shù)以及探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進一步體會數(shù)學知識之間的內(nèi)在聯(lián)系,提高數(shù)學思考的水平,對數(shù)學產(chǎn)生好奇心,培養(yǎng)學習興趣。教學重點:理解因數(shù)和倍數(shù)的意義,探索求一個數(shù)因數(shù)或倍數(shù)的方法。教學難點:探索求一個數(shù)因數(shù)或倍數(shù)的方法。教具準備:多媒體課件、學生練習題教學過程:一、談話導入。師:同學們看這是什么?生:小正方形。師:想不想知道王老師給大家?guī)砹硕嗌賯€這樣的小正方形?生:想。師:多少個?生:12個。師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?生:能。【設計意圖】:以學生熟悉情景引入,激發(fā)學生的好奇心。二、教學因數(shù)和倍數(shù)的意義師:增加一點難度,用一道算式說明你的想法,讓其他同學猜一猜你是怎么擺的,好嗎?生:好!學生匯報:生1:1×12=12師:他是怎么擺的?生:一行擺1個,擺了12行;也可以一行擺12個,擺1行。課件出示擺法。師:把第一種擺法豎起來就和第二種擺法一樣了,我們把這兩種擺法算作一種擺法。(用課件舍去一種)生2:2×6=12師:猜一猜他是在怎么擺的?生:一行擺2個,擺了6行;也可以一行擺6個,擺2行。師:這兩種情況,我們也算一種。生3:3×4=12師:他又是怎么擺的?生:一行擺3個,擺了4行;也可以一行擺4個,擺3行。師:還有其他擺法嗎?生:沒有了。師:對,如果把12個同樣大小的正方形拼成一個長方形,就只有這三種擺法,大家千萬不要小看了這三種擺法,更不要小看了這三種擺法下面的三道乘法算式,今天我們的新課就藏在這三道乘法算式里面。因數(shù)和倍數(shù)(板書課題)2.教學“因數(shù)和倍數(shù)”的意義。師:我們以3×4=12為例,在數(shù)學上可以說3是12的因數(shù),4也是12的因數(shù),12是3的倍數(shù),12也是4的倍數(shù)。這里還有兩道算式,同桌兩個同學先互相說一說誰是誰的因數(shù),誰是誰的倍數(shù)。學生匯報:任選一道回答。生1:12是12的因數(shù),1是12的因數(shù),12是2的倍數(shù),12是1的倍數(shù)。師:說的多好?。‰m然有點像繞口令,但數(shù)學上確實是這樣的。我們再一起說一遍。師:還有一道算式,誰來說一說?生:2是12的因數(shù),6是12的因數(shù),12是2的倍數(shù),12也是6的倍數(shù)。師明確:為了研究方便,我們所說的因數(shù)和倍數(shù)都是指自然數(shù),(0除外)。師:通過剛才的練習,你有沒有發(fā)現(xiàn)12的因數(shù)一共有哪些?(生邊說老師邊有序的用課件出示12的所有的因數(shù)。)師:好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰因數(shù)和倍數(shù)?行不行?先自己試一試。3、5、18、20、36【設計意圖】讓學生經(jīng)歷知識的形成過程。通過實際例子,讓學生進一步理解,因數(shù)和倍數(shù)之間存在著相互依存的關系。三、教學尋找因數(shù)的方法。1、找一個數(shù)的因數(shù)。師:看來同學們對于因數(shù)和倍數(shù)已經(jīng)掌握的不錯了。不過剛才老師在聽的時候發(fā)現(xiàn)一個奧秘,好幾個數(shù)都是36的因數(shù),你發(fā)現(xiàn)了嗎?誰能在五個數(shù)中把哪些數(shù)是36的因數(shù)一口氣說完?師:說出幾個36的因數(shù)并不難,關鍵是怎樣找的既有序又全面,有沒有信心挑戰(zhàn)一下?生:有。師:老師提個要求:1)、可以獨立完成,也可以同桌交流。2)、把這個數(shù)的因數(shù)找全以后,把你的方法記錄在下面。并總結(jié)你是怎樣找的。2、探索交流找一個數(shù)的因數(shù)的方法。找一名有代表性的作業(yè)板書在黑板上。師:他找對了嗎?生:沒有,漏下了一對。師:為什么會漏掉?僅僅是因為粗心嗎?生:不是,他沒有按照一定的順序找!師:那么要找到36所有的因數(shù)關鍵是什么?生:有序。師生共同邊說邊有序的把36的所有的因數(shù)板書出來。師:還有問題嗎?生:沒有了。生:你們沒有,老師有一個問題,你們?yōu)槭裁凑业?就不再接著往下找了?生:再接著找就重復了。師:那么找到什么時候就不找了?生:找到重復了,就不在往下找了。師、生共同總結(jié)找因數(shù)的方法。(一對一對有序的找,一直找到重復為止)。師:有失誤的學生對自己的錯誤進行調(diào)整。3、鞏固練習。找出下面各數(shù)的因數(shù)。4、尋找一個數(shù)的因數(shù)的特點。【設計意圖】放手讓學生自主找一個數(shù)的因數(shù),并總結(jié)找一個數(shù)因數(shù)的方法。學生非常喜歡,而且也能夠讓學生在活動中提升。四、教學尋找倍數(shù)的方法。1、找一個數(shù)的倍數(shù)。師:剛才我們學習了找一個數(shù)的因數(shù),那么你能像剛才一樣有序的找出一個數(shù)的所有倍數(shù)嗎?生:能!師:試試看,找個小的可以嗎?生:行!師:找一下3的倍數(shù)。30秒時間,把答案寫在練習紙上。??師:有什么問題嗎?生:老師,寫不完。師:為什么寫不完?生:有很多個!師:那怎么才能全都表示出來呢?生:可以加省略號。師:你太厲害了!你把語文上的知識都用上了,太真聰明了!難道不該再來點掌聲嗎?師:誰能總結(jié)一下你是怎樣找到的?生:從小到大依次乘自然數(shù)。師:你真會思考!課件出示3的倍數(shù)。2、找5、7的倍數(shù)。師:我們再來練習找一下5的倍數(shù)。生:5的倍數(shù)有:5、10、15、20、25??生:7的倍數(shù)有:7、14、21、28、35??師:你能像總結(jié)一個數(shù)因數(shù)的特點一樣,來總結(jié)一下一個數(shù)的倍數(shù)有什么特征嗎?生:能!學生總結(jié):一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。【設計意圖】在探索求一個數(shù)的倍數(shù)和因數(shù)的方法時,創(chuàng)設具體的情境讓學生去合作交流,并結(jié)合具體事例,讓學生自己觀察并發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征,豐富了教學方式,讓學生在觀察中發(fā)現(xiàn),在合作中體驗成功的喜悅,在主動參與、樂于探究中發(fā)展自我。四、知識拓展認識“完美數(shù)”。師:(課件出示6的因數(shù))在6的因數(shù)中還藏著另外一個秘密,(這是孩子們都瞪大眼睛在看,在聽!)我們把6的因數(shù)中最大的一個去掉,剩下1、2、3,然后把它們再加起來又回到6本身,數(shù)學家給這樣的數(shù)起了一個名字,叫“完美數(shù)”。依次出示第二個、第三個一直到第六個完美數(shù)。小結(jié):其實有關因數(shù)和倍數(shù)的秘密還有很多,它們在等待著同學們在以后的學習中去研究、去探索。【設計意圖】豐富學生的知識,陶冶學生的情操。教學反思:找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下三分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時如果再給予有效的指導和總結(jié)就更好了。因數(shù)和倍數(shù)教學反思6《數(shù)學課程標準》倡導“自主——合作——探究”的學習方式,強調(diào)學習是一個主動建構的過程。因此,應注重培養(yǎng)學生學習的獨立性和自主性,讓學生在教師的指導下主動地參與學習,親歷學習過程,從而學會學習。1、以“理”為基點,將學生帶入新知的學習。概念教學重在“理”。學生理解“因數(shù)”、“倍數(shù)”概念有個逐步形成的過程,為了促進這一意識建構,我先讓學生通過自己已有的認知結(jié)構,經(jīng)過“排列整齊的隊形——形成乘法算式——抽象出倍數(shù)因數(shù)概念——再由乘法或除法算式——深化理解”,使學生在輕松、簡約并充滿自信中學習新知,在數(shù)與形的結(jié)合中,深刻體驗因數(shù)倍數(shù)的概念。2、以“序”為站點,培養(yǎng)學生的思維方式。概念形成得在“序”。學生對于概念的形成是一個由表及里、由形象到抽象的過程。當學生對概念有了初步認識后,讓學生探索如何找一個數(shù)的倍數(shù)的因數(shù),這既是對概念內(nèi)涵的深化,也是對概念外延的探索。這時思維和排列上的有序性是教學的關鍵,也是本節(jié)課的深度之一。在教學時,分為兩個層次:第一個層次是讓學生在已有的知識基礎上找12的因數(shù),并在交流中,經(jīng)歷了一個從無序到有序、從把握個別到統(tǒng)攬整體、從思維混沌走向思維清晰的過程。抓住教學的難點“如何找全,并且不重復不遺漏”,讓學生自由地說,再引導學生說出想的過程,并加以調(diào)整。表面看來僅僅是組合的變換,實質(zhì)上是思維的提高和方法的優(yōu)化,并讓學生在對比中感受“一對一對”找因數(shù)的方法,經(jīng)歷了互相討論、相互補充、對比優(yōu)化的過程。第二個層次是在學生已經(jīng)有了探索一個數(shù)因數(shù)的方法,具備了一定有序思考的能力之后,啟發(fā)學生“能像找因數(shù)那樣有序的找一個數(shù)的倍數(shù)”,提高了學生的思維能力。3、以“思”為落腳點,培養(yǎng)學生發(fā)現(xiàn)思考的能力。概念的生成重在“思”,規(guī)律的形成重在“觀察”,教師如果能在此恰到好處的“引導”,一定會讓學生收獲更多,感悟更多。因此設計時,我借助了“找自己學號的因數(shù)和倍數(shù)”這個活動,在大量的有代表性的例子面前,在學生親自的嘗試中,在有目的的對比觀察中,學生的思維被逐步引導到了最深處,知道了一個數(shù)的最大因數(shù)和最小倍數(shù)都是它本身,反過來也是正確的。教師在這里提供了有效的素材,可操作的素材,促使學生對所學的概念進行了有意義的建構,促進和發(fā)展了他們的思維。因數(shù)和倍數(shù)教學反思7《因數(shù)和倍數(shù)》是一節(jié)概念課。教學時我首先以拼圖比賽為素材,讓學生動手操作快速把12個小正方形擺出一個長方形,再讓學生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,用學生已有的數(shù)學知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學,我覺得還是收到了預設的效果。能不重復、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學難點。在教學中,我是這樣設計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,我緊接著提問:12的因數(shù)有哪些?學生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學生說出方法后,為了讓學生探索出找一個因數(shù)的方法,我讓學生自己找一找15的因數(shù)有哪些。預設在匯報時,能借此解決如何有序、不重復、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強加給學生,而是以男女生比賽的形式,讓學生分別找16、18的所有因數(shù)。由于部分學生運用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復就是遺漏,這樣在比較中,不重復、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學生就能夠很好地接受并掌握。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學生自主探索、自主學習起到了很好的促進作用。最后引導學生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學生的情感,學生的思維不斷活躍起來。借助這一學習熱情讓學生自己探索找一個數(shù)的倍數(shù)的方法,學生學習興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。由于本節(jié)課的容量比較大,練習題設計綜合性比較強,學生學得并不輕松,還存在一小部分學生沒有很好地理解因數(shù)與倍數(shù)的關系。今后,應努力改進教學手段,提高學困生的學習效率。因數(shù)和倍數(shù)教學反思8通過今天的學習,你有什么收獲?課后作業(yè):課后自已或與同學合作制作一個含有因數(shù)和倍數(shù)知識的轉(zhuǎn)盤。教后反思:40分鐘的時間一閃而過,輕松愉悅的課堂氣氛,讓學生的學習情緒空前高漲,學生的學習熱情,學習過程中數(shù)學思維的提升,都在這短短的時間內(nèi)讓我感覺無盡的驚喜。課堂導入,親切,有效,讓學生先在腦海中留下“關系”這種印象,學生通過自己閱讀明白誰是誰的因數(shù),誰是誰的倍數(shù),然后通過試一試、練習、特別是(8是倍數(shù),4是因數(shù)?!ǎ┑谋嫖?,讓學生明白:在說倍數(shù)(或因數(shù))時,必須說明誰是誰的倍數(shù)(或因數(shù))。不能單獨說誰是倍數(shù)(或因數(shù))。因數(shù)和倍數(shù)不能單獨存在。通過尋找一個數(shù)的因數(shù),和一個數(shù)的倍數(shù),讓學生通過多個實例找到規(guī)律。在教學中由于過分依賴課件,致使有的環(huán)節(jié)沒有深入,沒有給學生時間進行因數(shù)和倍數(shù)教學反思9這是自入職以來第一堂得到李老師指點的課。感覺得到李老師課堂上對學生信任。也讓我更深一步的體會到,只有學生自己找出來的規(guī)律,特點,才能理解的更透徹,掌握的更牢固,應用起來更有效率。平日里,沒有給學生充分的時間,很多規(guī)律甚至是老師直接告訴學生的,雖然課堂教學的速度有了,但是效率并不高,后期教師要花費的時間更多。那才是真正的丟了西瓜撿芝麻!下面從幾點來分析本節(jié)課一、優(yōu)點課堂掌控力不錯,教師的個人素質(zhì)也不錯。二、不足1、是除不盡的。但是課堂上,我卻當做了能除盡的。思考出現(xiàn)這個錯誤的原因,是自己對課堂、對學生的預設不足!2、26是13和2的倍數(shù),13和2是26的因數(shù)大家發(fā)現(xiàn)沒有,大的是倍數(shù),小的是因數(shù)!我非常清楚,倍數(shù)、因數(shù)是有依存關系的,而不能單獨說,但是課堂上卻說出了“大的是倍數(shù),小的是因數(shù)”這樣一句有問題的話。失??!歸結(jié)原因,還是課堂太想投機取巧。作為一個引導學生入門的老師,在知識的門口,真的不能有絲毫差池,更不能為了一時的省事,而為后面的教學買下禍根!三、除了錯誤,還有很多做的復雜、不到位的地方。1、開篇之時,復習自然數(shù),是為本節(jié)課作知識鋪墊用的,但是,問題中的“自然數(shù)有什么特點?”卻是一個設計失敗的問題。已經(jīng)學到高等數(shù)學的我,自然之道,自然數(shù)的特點到底有多龐雜!根本不是一兩句話說的清的,但是我卻問了這樣一個問題。2、給定12張卡片列除法算式求商時,可以限定時間30秒,看說寫的又多又準確。也就是說能全員參與的,就單獨。讓學生在數(shù)學作業(yè)紙上寫完后,可以抓條,然后教師可以挑選著在摘錄一些。這樣準備充分,也可以為后面的分類打下堅實的基礎。3、找個一個數(shù)的因數(shù)時,要先找,在訂正,最后讓學生說說做法。而后更正練習,接著判斷,說方法。只有清楚的說出了方法,才能保證學生是真懂了。在這個過程中,還可以鼓勵學生總結(jié)一些自己的做法,比如用乘法找因數(shù),乘到幾就不乘了。用除法也是,除到幾就不除了?。ㄟ@個數(shù)的中間位置)4、本節(jié)課最好的量是到會找一個數(shù)的因數(shù)就可以了,接著歸納一個數(shù)因數(shù)的特點部分就拖堂了。內(nèi)容不能很好的在一堂課中充分的展現(xiàn)!一堂課教會了我很多,尤其是在教學方法上,李老師后來的引導,讓我清楚的看到了學生的聰明,學生的觀察力!要相信學生首先要給學生時間去觀察,去思考,去發(fā)現(xiàn)!否則,學生的思維永遠得不到真正的發(fā)展!能力無法得到充分的提升。因數(shù)和倍數(shù)教學反思10《倍數(shù)和因數(shù)》是四下第九單元的內(nèi)容。教學時,我首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作到直觀感知,讓學生自主體驗數(shù)與形的結(jié)合,進而形成倍數(shù)與因數(shù)的意義,使學生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說明誰是誰的倍數(shù),誰是誰的因數(shù),學生很容易接受,再通過學生自己舉例和交流,進一步加深對倍數(shù)和因數(shù)意義的理解。從學生的反應和課堂氣氛來看,教學效果還是不錯的。能不重復、不遺漏、有序地找出一個數(shù)的倍數(shù)和因數(shù),是本課的教學難點。教學時,我先讓學生自己找3的倍數(shù),匯報交流后通過對比(一種是沒有順序,一種是有序的)得出如何有序地找一個數(shù)的倍數(shù)的方法。對于倍數(shù),學生在以前的學習中已有所接觸,所以學生很容易學,用的時間也比較少。對于找一個數(shù)的因數(shù),學生最容易犯的錯誤就是漏找,即找不全。所以在學生交流匯報時,我結(jié)合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書幫助學生有序的思考,形成明晰的解題思路。學生通過觀察,發(fā)現(xiàn)當找到的兩個自然數(shù)非常接近時,就不需要再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點。因數(shù)和倍數(shù)教學反思11在本節(jié)課中,我加強了操作,讓學生通過動手拼12個小正方形為長方形,經(jīng)歷操作活動可以喚醒學生相關的數(shù)學活動經(jīng)驗,幫助學生在操作的過程中有意識地感受1和12、2和6、3和4這幾組數(shù)和12之間的有機聯(lián)系,為隨后學生有意義學習倍數(shù)和因數(shù)的概念打下基礎。找一個數(shù)的因數(shù)是本節(jié)課的一個難點,學生通過寫乘法算式和出發(fā)算式,感受到因數(shù)是成對出現(xiàn)的,同時要求學生在寫一個數(shù)的因數(shù)時,一前一后成對地寫出來,寫好以后是一串從小到大排列的數(shù),從而做到有序、不重復、不遺漏。而對于總結(jié)一個數(shù)倍數(shù)和因數(shù)的特征及其個數(shù)時,則引導學生自己通過觀察來感悟,學生學習的主動性和創(chuàng)造性得到了較好的體現(xiàn)。我在課上對于認識因數(shù)和倍數(shù)的教學所花的時間比較多,雖然也完成了教學任務,但是“想想做做”沒來得及完成,十分遺憾。因數(shù)和倍數(shù)教學反思12教學目標:1、使學生結(jié)合具體情境初步理解倍數(shù)和因數(shù)的含義,初步理解倍數(shù)和因數(shù)相互依存的關系。2、使學生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。3、使學生在認識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進一步感受數(shù)學知識的內(nèi)在聯(lián)系,提高數(shù)學思考的水平。教學重點:理解因數(shù)和倍數(shù)的含義。教學難點:探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。教學過程:一、認識倍數(shù)和因數(shù)1、操作活動。(1)小黑板出示要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法表示出來。(2)整理:全班交流,分別板書4×3=1212×1=126×2=123、學習“倍數(shù)”和“因數(shù)”的概念(1)談話:剛才同學們通過不同的擺法擺出了不同的長方形,而且還寫出了3個不同的乘法算式,今天,我們就一起來研究乘法算式中,數(shù)與數(shù)之間的關系。(出示:倍數(shù)和因數(shù))(2)根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?板書:12是4的倍數(shù),12是3的倍數(shù)4是12的因數(shù),3是12的因數(shù)(3)根據(jù)6×2=12,你能說出哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?根據(jù)12×1=12呢?(4)練一練:從3×6=1836÷4=9中任選一題說一說。為什么4和9是36的因數(shù)?4、小結(jié):根據(jù)乘法或除法算式我們可以確定誰是誰的因數(shù),誰是誰的倍數(shù)。為了方便,在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。二、探索找一個數(shù)的倍數(shù)的方法1、談話:在剛才的談話中,我們知道了12是3的倍數(shù),18也是3的倍數(shù)提問:3的倍數(shù)只有這兩個嗎?你還能再寫出幾個3的倍數(shù)?你是怎樣想的?你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?你能把3的倍數(shù)全都說完嗎?可以怎樣表示?2、議一議:你有沒有發(fā)現(xiàn)找3的倍數(shù)的小竅門?(在找3的倍數(shù)時,可以按從小到大的順序,依次用1、2、3……與3相乘,每次乘得的積都是3的倍數(shù))3、試一試:(1)2的倍數(shù)有(2)5的倍數(shù)有4、想一想:觀察上面幾個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?5、練一練:想想做做2三、探索求一個數(shù)的因數(shù)的方法1、提出問題:你能找出36的所有因數(shù)嗎?2、四人小組合作完成3、交流整理找一個數(shù)的因數(shù)的方法。4、試一試(既要一組一組地找,又要按次序排列)15的因數(shù)16的因數(shù)5、比一比:根據(jù)上面幾個例子,你發(fā)現(xiàn)一個數(shù)的因數(shù)有什么特點?和同桌說一說6、練一練:想想做做四、課堂總結(jié)。1、這節(jié)課,你有什么收獲?五、鞏固提高1、判斷(1)12是倍數(shù),3是因數(shù)(2)6既是2的倍數(shù),又是3的倍數(shù)。(3)25以內(nèi)4的倍數(shù)有:4,8,12,16,20,24……(4)6的最小倍數(shù)是12,12的最小因數(shù)是6。2、看誰反應快游戲準備:學生按學號編成連續(xù)的自然數(shù)。(課前)游戲規(guī)則:凡是學號符合以下要求的,請站起來,看誰反應快?(1)誰的學號是5的倍數(shù)(2)誰的學號是24的因數(shù)(3)誰的學號是30的因數(shù)(4)誰的學號是1的倍數(shù)反思:在教學過程中出現(xiàn)了一個問題:是在提問:“根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?”時,發(fā)現(xiàn)學生根本不能回答,本來以為學生在三年級的時候應該對這部分的內(nèi)容有所了解,能順利回答,但是在課后與三年級的教師交流后發(fā)現(xiàn)沒有這方面的內(nèi)容安排。由此,我想:新課程實施了五年,我其實還是門外漢,還不能很好地適應新課程的要求,新課程的'教材編排具有連續(xù)性,而老版本經(jīng)常是一個知識點安排在一起,注重深度。看來教師不光要關心自己年級的教材內(nèi)容,還得知道整個教材編排體系,知道各個年級知識點之間的聯(lián)系。這樣才能更好地完成教學任務,使學生得到應有的發(fā)展而不是降低要求的發(fā)展或者是被強行提高要求的發(fā)展。因數(shù)和倍數(shù)教學反思13反思教學效果總結(jié)了的原因有以下幾點:(一)素數(shù)和合數(shù)的判斷不熟練。一些數(shù)如:49、51、91這些數(shù)看上去是素數(shù),但其實是合數(shù)。這些數(shù)經(jīng)常被學生誤認為是素數(shù)而導致錯誤,原因是這些學生就簡單的看看,而不愿意用2、3、5等素數(shù)去嘗試,努力尋找是不是有第3個因數(shù)存在。(二)意思相同,但語句表述不同時,有的學生就不能正確理解。如:在上面的數(shù)只有兩個因數(shù)的數(shù)有哪些?其實這道題目就是問在上面的數(shù)中素數(shù)有哪些。(三)有的學生缺少分析理解,研究和判斷的能力,判斷和選擇題的錯誤比較多。例如:1的倍數(shù)肯定是奇數(shù)。如果一個學生先找到1的倍數(shù),然后根據(jù)數(shù)的特點作出正確的判斷。但有的學生看到1是個奇數(shù),然后就簡單地做出它的倍數(shù)也是奇數(shù)想法。例如:一個數(shù)的倍數(shù)一定比它的因數(shù)大。如果學生找一個數(shù),看看它的最小倍數(shù)是哪個?找找它的最大因數(shù)是哪個?這樣不難找到正確的答案。但是有的倍數(shù)簡單地被題目的意思誤導,加上平時的練習中還有倍數(shù)一般都是大的,因數(shù)一般都是小的概念,學生容易誤判。教學中,我和學生有時太滿足于平時練習的結(jié)果,而缺少讓學生進行數(shù)學思考和表達能力的過程訓練??磥碓谝院蟮慕虒W中,我要繼續(xù)改變教學觀念,要高度尊重學生,依靠學生,把以往教學中主要依靠教師轉(zhuǎn)變?yōu)橐揽繉W生。建議1、在新知教學中,注重引導學生進行探究。在本單元中找一個數(shù)的倍數(shù)和因數(shù),都有比較好的方法。如何通過學生的探究找到方法,成了教學的亮點。如“找36的因數(shù)”,找一個數(shù)的因數(shù)是本課的難點。應該說,找出36的幾個因數(shù)并不難,難就難在找出36的所有因數(shù)。教學中,建議教師不要把方法簡單地告訴學生,而是讓學生獨立去探究,獨立寫出36的所有因數(shù),在學生反饋的基礎上教師再引導學生對有序和無序作比較,學生才能在比較、交流中感悟有序思考的必要性和科學性。交流的過程正是學生相互補充、相互接納的過程,是對學習內(nèi)容進行深加工和重組知識的過程,是學生的認知不斷走向深入,思維水平不斷提升的過程。這是新知探究階段的思維交流。既是不斷深化理解因數(shù)與倍數(shù)知識的過程,又是培養(yǎng)學生良好思維品質(zhì)的過程。給學生獨立思考的空間,提出了各自的解法或見解,是思維獨創(chuàng)性的培養(yǎng);引導學生一對一對有序的找,或從1開始,用除法一個個去試,是思維條理性的培養(yǎng);既有遷移于擺方塊的形象思維,又有直接運用除法算式的抽象思維,或乘除法口訣的綜合運用等,在感受解法多樣性中,培養(yǎng)了學生思維的靈活性。2、寓教于樂,游戲中進行相應的鞏固練習。本節(jié)課是一節(jié)概念課,內(nèi)容比較枯燥,課本上的練習形式也比較單一,所以在認識倍數(shù)和因數(shù)后,應安排有趣味的游戲,比如數(shù)字轉(zhuǎn)盤游戲,讓學生看轉(zhuǎn)盤說指針停止時,內(nèi)圈的數(shù)與外圈的數(shù)的關系,進一步認識倍數(shù)和因數(shù),又能從中發(fā)現(xiàn)倍數(shù)和因數(shù)的相互依存的關系。在學會找倍數(shù)和因數(shù)之后也可設計游戲,如:“猜猜一位老師的電話號碼”,在一個八位數(shù)的號碼中已知其中四位,根據(jù)有關倍因數(shù)關系的問題請學生找出未知的四位號碼,以提高學生學習的積極性,稍有難度的練習給學有余力的學生一個證明自己能力的機會,讓學生在數(shù)學活動中體驗到數(shù)學學習的趣味性和挑戰(zhàn)性,學生運用所學知識解決問題,體會到了學習新知識后的成就感。3、教師要注重評價的導向作用,讓學生在評價中成長。在第一課時學生交流12的因數(shù)時,教師展示了三位同學的作業(yè):第一種是無序的,第二種是從小到大有序的,第三種是一對一對有序的。接著老師讓第一種方法的學生說說自己的想法,并讓其他同學評論,此時大多數(shù)學生的評價都認為不好,找得缺漏、無序,這時其實作為老師是否可以問問這種答案“有沒有值得肯定的地方?”,畢竟找到的這些答案都是正確地,然后再去尋找更好的方法。如果老師能經(jīng)常注意這樣引導評價,學生自然而然地意識到要先看別人的優(yōu)點,再看別人的缺點,也給了剛才那位學生一個心理上的安慰,使他能更積極地投入到學習當中去。因數(shù)和倍數(shù)教學反思14【教學內(nèi)容】人教版數(shù)學五年級下冊P12一14,練習二?!窘虒W過程】一、操作空間,初步感知。1.同桌用12塊完全一樣的小正方形拼成一個長方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。2.學生動手操作,并與同桌交流擺法。3.請用算式表達你的擺法。匯報:1×12=12,2×6=12,3×4=12?!驹u析】通過讓學生動手操作、想象、表達等環(huán)節(jié),既為新知探索提供材料,又孕育求一個數(shù)的因數(shù)的思考方法。二、探索空間,理解新知。1.理解因數(shù)和倍數(shù)。(1)觀察3×4=12,你能從數(shù)學的角度說說它們之間的關系嗎?師根據(jù)學生的表達完成以下板書:3是12的因數(shù)12是3的倍數(shù)4是12的因數(shù)12是4的倍數(shù)3和4是12的因數(shù)12是3和4的倍數(shù)(2)用因數(shù)和倍數(shù)說說算式1×12=12,2×6=12的關系。(3)觀察因數(shù)和倍數(shù)的相互關系。揭示:研究因數(shù)和倍數(shù)時,所指的數(shù)是整數(shù)(一般不包括O)。2.求一個數(shù)的因數(shù)。(1)出示2,5,12,15,36。從這些數(shù)中找一找誰是誰的因數(shù)。學生匯報。師:2和12是36的因數(shù),找1個、2個不難,難就難在把36所有的因數(shù)全部找出來,請同學們找出36的所有因數(shù)。出示要求:①可獨立完成,也可同桌合作。②可借助剛才找出12的所有因數(shù)的方法。③寫出36的所有因數(shù)。④想一想,怎樣找才能保證既不重復,又不遺漏。教師巡視,展示學生幾種答案。生1:1,2,3,4,9,12,36。生2:1,36,2,18,3,12,4,9,6。生3:1,4,2,36,9,3,6,12,18。(2)比較喜歡哪一種答案?為什么?用什么方法找既不重復又不遺漏。(按順序一對一對找,一直找到兩個因數(shù)相差很小或相等為止)師:有序思考更能準確找出一個數(shù)的所有因數(shù)。完成板書:描述式、集合式。(3)30的因數(shù)有哪些?【評析】學生圍繞教師出示的思考步驟,尋找36的所有因數(shù)。既留足了自主探索的空間,又在方法上有所引導,避免了學生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學的難點。3.求一個數(shù)的倍數(shù)。(1)3的倍數(shù)有:——,怎樣有序地找,有多少個?找一個數(shù)的倍數(shù),用1,2,3,4?分別乘這個數(shù)。(2)練一練:6的倍數(shù)有:,40以內(nèi)6的倍數(shù)有:一o【評析】由于有了有序思考的基礎,求一個數(shù)的倍數(shù)水到渠成,本環(huán)節(jié)重在思考方法上的提升。4.發(fā)現(xiàn)規(guī)律。觀察上面幾個數(shù)的因數(shù)和倍數(shù)的例子,你對它們的最大數(shù)和最小數(shù)有什么發(fā)現(xiàn)?根據(jù)學生匯報,歸納:一個數(shù)的最小因數(shù)是I,最大因數(shù)是它本身;一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)?!驹u析】通過觀察板書上幾個數(shù)的因數(shù)和倍數(shù),放手讓學生發(fā)現(xiàn)規(guī)律,既突出了學生的主體地位,又培養(yǎng)了學生觀察、歸納的能力。三、歸納空間,內(nèi)化新知。師生共同總結(jié):(1)因數(shù)和倍數(shù)是相互的,不能單獨存在。(2)找一個數(shù)的因數(shù)和倍數(shù),應有序思考。四、拓展空間,應用新知。1、15的因數(shù)有:——,15的倍數(shù)有:——。2.判斷。(1)6是因數(shù),24是倍數(shù)。()(2)3.6÷4=0.9,所以3.6是4的因數(shù)。()(3)1是1,2,3,4?的因數(shù)。()(4)一個數(shù)的最小倍數(shù)是21,這個數(shù)的因數(shù)有1,5,25。()3、選用4,6,8,24,1,5中的一些數(shù)字,用今天學習的知識說一句話。4、舉座位號起立游戲。(1)5的倍數(shù)。(2)48的因數(shù)。(3)既是9的倍數(shù),又是36的因數(shù)。(4)怎樣說一句話讓還坐著的同學全部起立?!驹u析】本環(huán)節(jié)的前3題側(cè)重于鞏固新知,后2題側(cè)重于發(fā)展思維。通過“說一句話”和“起立游戲”,展現(xiàn)了學生的個性思維,體現(xiàn)了知識的應用價值?!痉此肌勘菊n教學設計重在讓學生通過自主探索,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法,體驗有序思考的重要性。體現(xiàn)了以下兩個特點:一、留足空間,讓探索有質(zhì)量。留足思維空間,才能充分調(diào)動多種感官參與學習,充分發(fā)揮知識經(jīng)驗和生活經(jīng)驗,使探索成為知識不斷提升、思維不斷發(fā)展、情感不斷豐富的過程。第一,把教材中的飛機圖改為拼長方形,讓同桌同學借助12塊完全一樣的正方形拼成一個長方形。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。第二:放手讓每個同學找出36的所有因數(shù),由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。第三:通過觀察12,36,30的因數(shù)和3,6的倍數(shù),你發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。第四:讓學生“選用4,6,8,24,1,5中的一些數(shù)字,用今天學習的知識說一句話”。不拘形式的說話空間,不僅體現(xiàn)了差異性教學,更是體現(xiàn)了不同的人在數(shù)學上的不同發(fā)展。二、適度引導,讓探索有方向。引導與探索并不矛盾,探索前的適度引導正是讓探索走得更遠。探索12塊完全一樣的正方形拼成一個長方形,有幾種拼法?教師提示能想象的就想象,不能想象的可借助小正方形擺一擺。這樣的引導,是尊重學生不同思維的有效引導。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地鐵貨運線設備智能化升級方案分析報告
- 民宿行業(yè)節(jié)水技術應用對民宿行業(yè)可持續(xù)發(fā)展的影響報告
- 國慶節(jié)鹵肉活動方案策劃
- 水果店考勤管理制度
- 心理學教案設計模板
- 煉油廠安全環(huán)保合理化建議
- 服裝廠 考勤管理制度
- 國慶節(jié)房間活動方案
- 古代音樂舞蹈與石刻藝術研究合同
- 空間感知技術應用-洞察及研究
- 財務總監(jiān)招聘筆試題與參考答案(某大型國企)2025年
- 人教版四年級上冊數(shù)學第三單元《角的度量》測試卷含完整答案(各地真題)
- 產(chǎn)品方案設計模板
- 【平臺化物流模式運作存在的問題及優(yōu)化建議探析:以菜鳥物流為例(論文)6700字】
- 第五屆應急管理普法知識競賽考試題庫500題(含答案)
- 浙教版二年級下冊遞等式計算題100道及答案
- T-CTSS 86-2024 原味茶飲料標準
- QCT957-2023洗掃車技術規(guī)范
- 手術切口感染PDCA案例
- 心電圖主任崗位述職報告
- 粉塵清掃記錄-帶說明
評論
0/150
提交評論