




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、二、第二類換元法二、第二類換元法一、第一類換元法一、第一類換元法例例2. 求.d22xax想到公式21duuCu arctan例例3. 求).0(d22axax21duu想到Cu arcsin例例4. 求.dtanxx解解:xxxdcossinxxcoscosdCx cosln?dcotxxxxxsindcosCx sinlnxxsinsindxxdtan類似Caxaxaln21例例5. 求.d22axx解解:221ax )(axax)()(axaxa21)11(21axaxa 原式原式 常用的幾種配元形式常用的幾種配元形式: 1)()df axbx()f axb)(dbxa a112)()d
2、nnf xxx)(nxfnxdn113)()dnf xxx)(nxfnxdn1nx1萬能湊冪法4)(sin )cos dfxx x )(sin xfxsind5)(cos )sin dfxx x )(cos xfxcosdxxxfdsec)(tan)62)(tan xfxtandxfxxde )(e)7)(exfxedxxxfd1)(ln)8)(lnxfxlnd例例9. 求.e1dxx解法解法1xxe1dxxxxde1e)e1 (xdxxe1)e1 (dxCx)e1ln(解法解法2 xxe1dxxxde1exxe1)e1 (dCx)e1ln()1(elne)e1ln(xxx兩法結(jié)果一樣兩法結(jié)果
3、一樣xxxsindsin11sin1121例例10. 求.dsecxx解法解法1 xxdsecxxxdcoscos2xx2sin1sindxsin1ln21Cxsin1lnCxxsin1sin1ln21)2cos2cos21 (241xx 例例12 . 求.dcos4xx解解:224)(coscosxx 2)22cos1(x)2cos21 (24cos141xx)4cos2cos2(212341xxxxdcos4xxxd)4cos2cos2(21234141xd23)2d(2cosxx)4(d4cos81xxx83x2sin41x4sin321C例例13. 求.d3cossin22xxx解解:
4、xx3cossin22221)2sin4(sinxx 思考與練習(xí)思考與練習(xí)1. 下列各題求積方法有何不同? xx4d) 1 (24d)2(xxxxxd4)3(2xxxd4)4(2224d)5(xx24d)6(xxxxx4)4(d22221)(1)d(xx22214)4(dxxxxd441241xx2121xd2)2(4x)2(dx二、第二類換元法二、第二類換元法第一類換元法解決的問題難求易求xxxfd)()(uufd)()(xu若所求積分xxxfd)()(易求,則得第二類換元積分法 .難求,uufd)(例例16. 求. )0(d22axxa解解: 令, ),(,sin22ttax則taaxa2
5、2222sintacosttaxdcosd ax22xa t例例17. 求. )0(d22aaxx解解: 令, ),(,tan22ttax則22222tanataaxtasecttaxdsecd2ax22ax t例例18. 求. )0(d22aaxx解解:,時(shí)當(dāng)ax 令, ),0(,sec2ttax則22222secataaxtatanxdtttadtansecax22ax t例例19. 求.d422xxxa解解: 令,1tx 則txtdd21小結(jié)小結(jié):1. 第二類換元法常見類型第二類換元法常見類型: ,d),() 1xbaxxfn令nbxat,d),()2xxfndxcbxa令ndxcbxa
6、t,d),()322xxaxf令taxsin或taxcos,d),()422xxaxf令taxtan,d),()522xaxxf令taxsec7) 分母中因子次數(shù)較高時(shí), 可試用倒代換倒代換 ,d)()6xafx令xat 由導(dǎo)數(shù)公式vuvuuv )(積分得:xvuxvuuvdd分部積分公式分部積分公式xvuuvxvudd或uvvuvudd1) v 容易求得 ;xvuxvudd)2比容易計(jì)算 .:)d(的原則或及選取vvu分部積分法例例4. 求.dsinexxx解解: 令,sinxu xve, 則,cos xu xve 原式xxsinexxxdcose再令,cos xu xve, 則xve解題技巧解題技巧:的一般方法及選取vu把被積函數(shù)視為兩個(gè)函數(shù)之積 , 按 “ 反對(duì)冪指三反對(duì)冪指三” 的順序, 前者為 后者為u.v反: 反三角函數(shù)對(duì): 對(duì)數(shù)函數(shù)冪: 冪函數(shù)指: 指數(shù)函數(shù)三: 三角函數(shù)例例7. 求.dexx解解: 令, tx則,2tx ttxd2d 原式tttde2tte2Cxx)1(e2, tu tve)etC令tte(2ttde例例9. 求.)(d22nnaxxI解解: 令,)(122naxu, 1 v則,)(2122naxx
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- (標(biāo)準(zhǔn))流進(jìn)人口協(xié)議書
- 2025年室內(nèi)裝修設(shè)計(jì)師軟裝搭配考試試題及答案
- 2025年室內(nèi)裝飾設(shè)計(jì)師技能認(rèn)證考試試卷及答案
- 2025年市場(chǎng)營(yíng)銷總監(jiān)管理能力考核試題及答案
- 2025年市場(chǎng)營(yíng)銷策劃師實(shí)戰(zhàn)能力考核試卷及答案
- 2025年食品加工衛(wèi)生安全操作規(guī)范考核測(cè)試試題及答案
- 移動(dòng)應(yīng)用項(xiàng)目開發(fā)實(shí)戰(zhàn) 課件C模塊 任務(wù)1-3 編寫缺陷分析報(bào)告- 編寫產(chǎn)品使用手冊(cè)的操作說明
- 數(shù)字人民幣2025跨境支付技術(shù)難題解析及前瞻性解決方案研究報(bào)告
- 特色農(nóng)產(chǎn)品加工園區(qū)建設(shè)與2025年社會(huì)穩(wěn)定風(fēng)險(xiǎn)防控策略研究報(bào)告
- 文化旅游小鎮(zhèn)開發(fā)項(xiàng)目社會(huì)穩(wěn)定風(fēng)險(xiǎn)評(píng)估與風(fēng)險(xiǎn)預(yù)警機(jī)制研究報(bào)告
- 2025年公務(wù)員考試時(shí)事政治考試題庫附完整答案詳解(考點(diǎn)梳理)
- 2025年國(guó)家電網(wǎng)招聘電工類-本科、??疲ü俜剑?第五章公共與行業(yè)知識(shí)歷年參考試題庫答案解析(5卷100道合輯-單選題)
- 2025廣東省事業(yè)單位招聘高校畢業(yè)生模擬試卷及參考答案詳解
- GB/T 21649.2-2025粒度分析圖像分析法第2部分:動(dòng)態(tài)圖像分析法
- 醫(yī)院感染(院內(nèi)感染)培訓(xùn)試題及答案
- 黃岡市英山縣城區(qū)社區(qū)招聘社區(qū)工作者考試真題2024
- 廣東省梅州市2024-2025學(xué)年高二下學(xué)期期末考試歷史試題(含答案)
- 2025年大數(shù)據(jù)分析師認(rèn)證考試試卷答案
- 基孔肯雅熱防控技術(shù)指南
- 濟(jì)南露天燒烤管理辦法
- 教育教學(xué)理論與實(shí)踐2025年考試試題及答案
評(píng)論
0/150
提交評(píng)論