



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2.2.2事件的相互獨立性一教學目標:知識與技能:理解兩個事件相互獨立的概念,會用相互獨立事件的概率乘法公式計算一些事件的概率。過程與方法:進一步發(fā)展學生類比、歸納、猜想等合情推理能力;通過對各種不同的實際情況的分析、判斷、探索,培養(yǎng)學生的應用能力。情感、態(tài)度與價值觀:通過對實例的分析,會進行簡單的應用。教學重點:相互獨立事件的意義和相互獨立事件同時發(fā)生的概率公式。教學難點:對事件獨立性的判定,以及能正確地將復雜的概率問題分解轉(zhuǎn)化為幾類基本的概率模型. 二教學過程:創(chuàng)設情境,提出問題 合作交流,感知問題 類比聯(lián)想,探索問題 實踐應用,解決問題 總結(jié)反思,深化拓展.1.創(chuàng)設情境,提出問題:問題一
2、:“常言道,三個臭皮匠能抵諸葛亮 ”。怎樣從數(shù)學上來解釋呢?將問題具體化:假如對某事件諸葛亮想出計謀的概率為0.88,三個臭皮匠甲、乙、丙想出計謀的概率各為0.6、0.5、0.5.問這三個臭皮匠能勝過諸葛亮嗎 ?問題二:2010年1月26日上午,nba常規(guī)賽進行了一場焦點之戰(zhàn)-勒布朗-詹姆斯領銜的克利夫蘭騎士在客場挑戰(zhàn)由韋德率領的邁阿密熱火。比賽非常激烈,直到終場前3.1秒比分打成90平,熱火隊犯規(guī),詹姆斯獲兩次罰籃機會,已知詹姆斯的罰籃命中率為77.6%,問騎士隊此時獲勝的概率是多少? 我們一起學習完今天這節(jié)課后,問題就會得到解答。引入課題:2.2.2事件的相互獨立性(板書)2.復習回扣:
3、條件概率 :設事件a和事件b,且p(a)0,在已知事件a發(fā)生的條件下事件b發(fā)生的概率,叫做條件概率。記作p(b |a).條件概率計算公式:3.新課講解:探究1:三張獎券有一張可以中獎,現(xiàn)由三名同學依次有放回地抽取。定義a為事件“第一位同學中獎”,b為事件“第三位同學中獎”。問:事件a發(fā)生對于事件b發(fā)生有影響嗎?答:事件a的發(fā)生不會影響事件b發(fā)生的概率。相互獨立的定義 : 設a、b是兩個事件,如果p(ab)=p(a)p(b),則稱事件a與事件b相互獨立。判斷兩個事件相互獨立的方法:1.定義法:p(ab)=p(a)p(b)2.經(jīng)驗判斷:a發(fā)生與否不影響b發(fā)生的概率,b發(fā)生與否不影響a發(fā)生的概率。推
4、廣:如果事件a1,a2,an相互獨立,那么這n個事件同時發(fā)生的概率等于每個事件發(fā)生的概率的積.即: p(a1a2an)= p(a1)p(a2)p(an) 可以讓學生舉例子加深對相互獨立的理解練習1 判斷下列各對事件的關系(1)甲乙各射擊一次,甲射中9環(huán)與乙射中8環(huán);(相互獨立) (相互獨立) (3)隨機從52張撲克牌中抽取一張,“抽到的是紅桃”與“抽到的是k” (相互獨立)探究2:甲壇子里有3個白球,2個黑球,乙壇子里有2個白球,2個黑球,設從甲壇子里摸出一個球,得出白球叫做事件a,從乙壇子里摸出1個球,得到白球叫做事件b。 引導學生總結(jié)性質(zhì) 相互獨立事件的性質(zhì): 4.例題講解例1、某商場推出
5、兩次開獎活動,凡購買一定價值的商品可以獲得一張獎券。獎券上有一個兌獎號碼,可以分別參加兩次抽獎方式相同的兌獎活動。如果兩次兌獎活動的中獎概率都為0.05,求兩次抽獎中以下事件的概率:(1)“都抽到中獎號碼”;(2)“恰有一次抽到中獎號碼”;(3)“至少有一次抽到中獎號碼”。解: (1)記“第一次抽獎抽到某一指定號碼”為事件a, “第二次抽獎抽到某一指定號碼”為事件b,則“兩次抽獎都抽到某一指定號碼”就是事件ab。由于兩次的抽獎結(jié)果是互不影響的,因此a和b相互獨立.于是由獨立性可得,兩次抽獎都抽到某一指定號碼的概率為 p(ab)=p(a)p(b)=0.050.05=0.0025(2)“兩次抽獎恰
6、有一次抽到某一指定號碼”可以表示為由于事件 與 互斥, (3) “兩次抽獎至少有一次抽到某一指定號碼”可以表示為。另解:(逆向思考)至少有一次抽中的概率為練習2 在一段時間內(nèi),甲地下雨的概率是0.2,乙地下雨的概率是0.3,假定在這段時間內(nèi)兩地是否下雨相互之間沒有影響,計算在這段時間內(nèi):(1)甲、乙兩地都下雨的概率; (2)甲、乙兩地都不下雨的概率; (3)其中至少有一地下雨的概率. 解:(1)p=0.20.30.06 (2)p=(1-0.2)(1-0.3)=0.56 (3)p=1-0.56=0.44練習3填表概率意義事件a與事件b同時發(fā)生 事件a發(fā)生且事件b不發(fā)生 事件b發(fā)生且事件a不發(fā)生
7、事件b不發(fā)生且事件a不發(fā)生 事件a與事件b恰有一個發(fā)生 事件a與事件b至多一個發(fā)生 事件a與事件b至少一個發(fā)生 提問:若事件abc之間相互獨立,至少一個發(fā)生怎么表示?5.問題解決問題一:定義三個臭皮匠甲、乙、丙單獨想出計謀分別為事件a、b、c, 三個臭皮匠中至少有一人解出的概率為: 所以,合三個臭皮匠之力把握就大過諸葛亮.簡述學習上合作互相幫助 團結(jié)就是力量,問題二:詹姆斯獲兩次罰籃機會,已知詹姆斯的罰籃命中率為77.6%,問騎士隊此時獲勝的概率是多少? 按照比賽規(guī)則,此時罰兩球至少罰進一個即取得勝利,所以有95%的概率取得勝利。6.辨析互斥事件相互獨立事件概念不可能同時發(fā)生的兩個事件叫做互斥事件.如果事件a(或b)是否發(fā)生對事件b(或a)發(fā)生的概率沒有影響,這樣的兩個事件叫做相互獨立事件符號互斥事件a、b中有一個發(fā)生記作:a+b相互獨立事件a、b同時發(fā)生,記作:a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食堂服務行業(yè)運營面試常見問題及答案解析
- 人力資源專家面試題庫與參考
- 企業(yè)招聘中的必 備技能:四大面試題庫及其應對策略
- 新媒體運營崗位面試技巧與題庫
- 全面認識人才招聘面試:綜合評價面試題庫及應對策略
- 學憲法課件教學課件
- 學會記事課件
- 全程綠色防控技術在小麥病蟲害過程中的運用思考
- 急性坐骨神經(jīng)痛的臨床觀察
- 2025年健康養(yǎng)生食品行業(yè)健康食品行業(yè)消費者行為分析與市場前景報告
- 濱州傳媒集團考試題庫及答案
- T/CBMCA 007-2019合成樹脂瓦
- 銷售合同合規(guī)培訓
- 道路養(yǎng)護協(xié)議書范本
- 支付結(jié)算人行題庫及答案
- 《城市更新的》課件
- 2024-2030全球商業(yè)電子垃圾回收行業(yè)調(diào)研及趨勢分析報告
- 會議活動風險管理研究-全面剖析
- 機械傳動知識課件2
- 2025年度運輸業(yè)安全生產(chǎn)知識競賽試題(附答案)
- 從業(yè)人員培訓管理制度
評論
0/150
提交評論