中文字字幕乱码视频,亚洲av无码乱码在线观看富二代,亚洲乱妇亚洲乱妇xinglu,亚洲日韩乱码中文无码蜜桃臀,亚洲精品无码久久久久久久

QQ截圖20201210215100.jpg
QQ截圖20201210215100.jpg

5MW海上風(fēng)電機(jī)組齒輪傳動(dòng)系統(tǒng)設(shè)計(jì)說明書CAD

收藏

編號(hào):105853850    類型:共享資源    大?。?span id="z3jilz61osys" class="font-tahoma">1.20MB    格式:ZIP    上傳時(shí)間:2020-12-10 上傳人:遺**** IP屬地:湖北
35
積分
關(guān) 鍵 詞:
MW 海上 機(jī)組 齒輪 傳動(dòng)系統(tǒng) 設(shè)計(jì) 說明書 CAD
資源描述:
5MW海上風(fēng)電機(jī)組齒輪傳動(dòng)系統(tǒng)設(shè)計(jì)說明書CAD,MW,海上,機(jī)組,齒輪,傳動(dòng)系統(tǒng),設(shè)計(jì),說明書,CAD
內(nèi)容簡介:
湖 南 科 技 大 學(xué)畢業(yè)設(shè)計(jì)(論文)任務(wù)書 機(jī)電工程 學(xué)院 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 系(教研室)系(教研室)主任: (簽名) 年 月 日學(xué)生姓名: 賴文馨 學(xué)號(hào): 1103010401 專業(yè): 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 1 設(shè)計(jì)(論文)題目及專題: 5MW海上風(fēng)電機(jī)組齒輪傳動(dòng)系統(tǒng)設(shè)計(jì) 2設(shè)計(jì)(論文)時(shí)間:自 2014 年 10 月 17 日開始至 2015 年 06 月 01 日止3 設(shè)計(jì)(論文)所用資源和參考資料: 5MW傳動(dòng)系統(tǒng)葉片額定轉(zhuǎn)速12.1rpm,額定發(fā)電機(jī)轉(zhuǎn)速1173.7rpm,齒輪箱傳動(dòng)比為97:1。(一級(jí)行星、二級(jí)斜齒輪) 國外REpower 5MW、Multibrid M5000等風(fēng)電機(jī)組齒輪傳動(dòng)系統(tǒng)的相關(guān)資料;相關(guān)教材,如海上風(fēng)力發(fā)電機(jī)組設(shè)計(jì)、風(fēng)力機(jī)設(shè)計(jì)、制造與運(yùn)行)等;圖書館電子資源數(shù)據(jù)庫搜集到的期刊論文,博士、碩士學(xué)位論文等。4 設(shè)計(jì)(論文)應(yīng)完成的主要內(nèi)容:1) 完成5MW海上風(fēng)電機(jī)組齒輪箱傳動(dòng)形式、傳動(dòng)比分配等設(shè)計(jì)與計(jì)算;2) 完成傳動(dòng)軸、齒輪、軸承等關(guān)鍵傳動(dòng)零部件的選擇、設(shè)計(jì)、計(jì)算與校核;3) 查閱相關(guān)文獻(xiàn)資料,撰寫開題報(bào)告;4) 完成相關(guān)論文的翻譯(英譯中,不少于3000字)。5 提交設(shè)計(jì)(論文)形式(設(shè)計(jì)說明與圖紙或論文等)及要求:1) 完成5MW海上風(fēng)電機(jī)組傳動(dòng)系統(tǒng)設(shè)計(jì),提供傳動(dòng)系統(tǒng)3D模型,裝配圖、零件圖等共折合A0圖紙不少于2.5張;2) 設(shè)計(jì)計(jì)算說明書一份,畢業(yè)設(shè)計(jì)說明書的書寫格式和版面要求參照湖南科技大學(xué)本科生畢業(yè)設(shè)計(jì)(論文)要求與撰寫規(guī)范,說明書不少于40頁。6 發(fā)題時(shí)間: 2014 年 10 月 17 日指導(dǎo)教師: (簽名)學(xué) 生: (簽名)湖 南 科 技 大 學(xué)畢 業(yè) 設(shè) 計(jì)( 論 文 )題目5MW海上風(fēng)電機(jī)組齒輪動(dòng)系統(tǒng)設(shè)計(jì)作者 賴文馨學(xué)院 機(jī)電工程學(xué)院專業(yè) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化學(xué)號(hào) 1103010401指導(dǎo)教師 沈意平 二一五年五月二十一日附件2:任務(wù)書示例湖 南 科 技 大 學(xué)畢業(yè)設(shè)計(jì)(論文)任務(wù)書 機(jī)電工程學(xué) 院 系(教研室)系(教研室)主任: (簽名) 年 月 日學(xué)生姓名: 學(xué)號(hào): 專業(yè): 1 設(shè)計(jì)(論文)題目及專題: 2 學(xué)生設(shè)計(jì)(論文)時(shí)間:自 年 月 日開始至 年 月 日止3 設(shè)計(jì)(論文)所用資源和參考資料:4 設(shè)計(jì)(論文)應(yīng)完成的主要內(nèi)容:5 提交設(shè)計(jì)(論文)形式(設(shè)計(jì)說明與圖紙或論文等)及要求:6 發(fā)題時(shí)間: 年 月 日指導(dǎo)教師: (簽名)學(xué) 生: (簽名)附件3:指導(dǎo)人評(píng)語示例湖 南 科 技 大 學(xué)畢業(yè)設(shè)計(jì)(論文)指導(dǎo)人評(píng)語主要對(duì)學(xué)生畢業(yè)設(shè)計(jì)(論文)的工作態(tài)度,研究內(nèi)容與方法,工作量,文獻(xiàn)應(yīng)用,創(chuàng)新性,實(shí)用性,科學(xué)性,文本(圖紙)規(guī)范程度,存在的不足等進(jìn)行綜合評(píng)價(jià)指導(dǎo)人: (簽名)年 月 日 指導(dǎo)人評(píng)定成績: 附件4:評(píng)閱人評(píng)語示例湖 南 科 技 大 學(xué)畢業(yè)設(shè)計(jì)(論文)評(píng)閱人評(píng)語主要對(duì)學(xué)生畢業(yè)設(shè)計(jì)(論文)的文本格式、圖紙規(guī)范程度,工作量,研究內(nèi)容與方法,實(shí)用性與科學(xué)性,結(jié)論和存在的不足等進(jìn)行綜合評(píng)價(jià)評(píng)閱人: (簽名)年 月 日 評(píng)閱人評(píng)定成績: 附件5:答辯記錄示例湖 南 科 技 大 學(xué)畢業(yè)設(shè)計(jì)(論文)答辯記錄日期: 學(xué)生: 學(xué)號(hào): 班級(jí): 題目: 提交畢業(yè)設(shè)計(jì)(論文)答辯委員會(huì)下列材料:1 設(shè)計(jì)(論文)說明書共頁2 設(shè)計(jì)(論文)圖 紙共頁3 指導(dǎo)人、評(píng)閱人評(píng)語共頁畢業(yè)設(shè)計(jì)(論文)答辯委員會(huì)評(píng)語:主要對(duì)學(xué)生畢業(yè)設(shè)計(jì)(論文)的研究思路,設(shè)計(jì)(論文)質(zhì)量,文本圖紙規(guī)范程度和對(duì)設(shè)計(jì)(論文)的介紹,回答問題情況等進(jìn)行綜合評(píng)價(jià)答辯委員會(huì)主任: (簽名)委員: (簽名)(簽名)(簽名)(簽名) 答辯成績: 總評(píng)成績: 湖南科技大學(xué)機(jī)電工程學(xué)院 2015屆畢業(yè)設(shè)計(jì)(論文)開題報(bào)告題 目5MW海上風(fēng)電機(jī)組齒輪傳動(dòng)系統(tǒng)設(shè)計(jì)作者姓名賴文馨學(xué)號(hào)1103010401所學(xué)專業(yè)機(jī)械設(shè)計(jì)制造及其自動(dòng)化1、 研究的意義: 當(dāng)今社會(huì)隨著經(jīng)濟(jì)日益發(fā)展,人們對(duì)能源的需求越來越大,而石油等不可再生能源也面臨枯竭,人們急需尋找替代能源。自然界中具有非常大的風(fēng)能儲(chǔ)存量,由于太陽的輻射作用,地球每年大約可獲得的 地球每年大約可獲得 KWh 的風(fēng)能。其中,邊界層占整個(gè)大氣層的 35%,因而邊界層大氣中可利用的風(fēng)能功率約為 KW,如果人類在近地面層能利用其中的十分之一,則全球可開發(fā)風(fēng)能的功率為KW。這個(gè)值相當(dāng)于 2005 年全球發(fā)電能力的 74.7 倍1。通過上述數(shù)據(jù)可知,風(fēng)能是地球上最重要的能源之一,合理的開發(fā)利用風(fēng)能可以解決越來越嚴(yán)重的能源短缺問題。風(fēng)能作為一種清潔的、儲(chǔ)量極為豐富的可再生能源,在未來的能源市場(chǎng)很有開發(fā)潛力,各國政府相繼投入大量的人力及資金研究生產(chǎn)風(fēng)力發(fā)電機(jī),力圖設(shè)計(jì)出安全可靠高效的風(fēng)力發(fā)電機(jī)。風(fēng)力發(fā)電機(jī)中很重要的一部分就是齒輪傳動(dòng)增速箱,如何把齒輪傳動(dòng)系統(tǒng)設(shè)計(jì)好便成了關(guān)鍵問題2、國內(nèi)外現(xiàn)狀: 從20世紀(jì)70年代末以來,隨著世界各國對(duì)能源危機(jī)、環(huán)境保護(hù)等問題的日益關(guān)注,一致認(rèn)為大規(guī)模發(fā)展利用風(fēng)力發(fā)電是非常有效的措施之一。19 世紀(jì)末、丹麥最先開始探索風(fēng)力發(fā)電、研制出風(fēng)力發(fā)電機(jī)組直到20 世紀(jì)70 年代以前,只有小型充電用風(fēng)力機(jī)達(dá)到實(shí)用階段。1973 年石油危機(jī)后,美國、歐洲等發(fā)達(dá)國家為尋求替代能源,投入大量經(jīng)費(fèi),研制現(xiàn)代風(fēng)力發(fā)電機(jī)組,開創(chuàng)了風(fēng)能利用的新時(shí)期。世界風(fēng)能委員會(huì) 11 日公布的一份報(bào)告指出,到 2010 年,全球風(fēng)能發(fā)電能力將比現(xiàn)在提高一倍,達(dá)到 149.5 吉瓦。根據(jù)世界風(fēng)能委員會(huì)的統(tǒng)計(jì)數(shù)據(jù),僅在 2006年,全球風(fēng)力發(fā)電能力就比上年增長了 25,達(dá)到了 74 吉瓦。歐洲一直以來是風(fēng)力發(fā)電市場(chǎng)的領(lǐng)導(dǎo)者,目前在風(fēng)能發(fā)電領(lǐng)域仍處在世界前列,而且在今后幾年其在風(fēng)力發(fā)電實(shí)際運(yùn)用及其國際市場(chǎng)上還將繼續(xù)保持領(lǐng)先地位,但隨著近年來世界其他國家和地區(qū)對(duì)風(fēng)力發(fā)電的重視和發(fā)展,歐洲的領(lǐng)先優(yōu)勢(shì)會(huì)有所下降。據(jù)世界風(fēng)能委員會(huì)的統(tǒng)計(jì),2004 年歐洲風(fēng)力發(fā)電裝機(jī)容量占全世界風(fēng)電總裝機(jī)容量的 72,2005 年該比例就下降為 69,而去年則又跌至 51,到 2010 年,雖然整個(gè)歐洲的風(fēng)力發(fā)電量將比目前的 48 吉瓦增長近一倍達(dá)到 82 吉瓦,但其占全球市場(chǎng)的份額則將下滑到 44。這份報(bào)告還對(duì) 2006 年到 2010 年期間全球各地區(qū)風(fēng)力發(fā)電態(tài)勢(shì)進(jìn)行了預(yù)測(cè)。報(bào)告說,由于美國連續(xù)采取生產(chǎn)稅抵免等多項(xiàng)風(fēng)能激勵(lì)措施,北美地區(qū)風(fēng)力發(fā)電的發(fā)展仍將保持快速增長勢(shì)頭。緊隨其后的是風(fēng)力發(fā)電的新興增長地區(qū)亞洲,主要是中國和印度,亞洲將成為全球風(fēng)能發(fā)電年增長幅度最快的地區(qū)之一,年增長將達(dá) 28.3,其風(fēng)力發(fā)電能力將從 2006 年的 10.7 吉兆增長到 2010 年的 29 吉兆。風(fēng)力發(fā)電機(jī)單機(jī)裝機(jī)容量也從最初的 50KW,發(fā)展到 3.6MW,目前新建風(fēng)場(chǎng)普遍采用 1.5MW 成熟機(jī)型,單機(jī)容量繼續(xù)穩(wěn)步上升已成為風(fēng)力發(fā)電機(jī)的發(fā)展趨勢(shì)2。 我國三北地區(qū)風(fēng)能功率密度在 200300W/m2以上,有的可達(dá) 500W/m2以上,如阿拉山口、達(dá)坂城、輝騰錫勒、錫林浩特的灰騰梁等、可利用的小時(shí)數(shù)在 5000小時(shí)以上,有的可達(dá) 7000 小時(shí)以上。東南沿海地區(qū)年有效風(fēng)能功率密度在 200W/m2以上,將風(fēng)能功率密度線平行于海岸線,沿海島嶼風(fēng)能功率密度在 500 W/m2以上如臺(tái)山、平潭、東山、南鹿、大陳、嵊泗、南澳、馬祖、馬公、東沙等??衫眯r(shí)數(shù)約在 7000-8000 小時(shí)。根據(jù)最新風(fēng)能資源評(píng)價(jià),我國陸地可利用風(fēng)能資源 3 億千瓦,加上近岸海域可利用的風(fēng)能資源,共計(jì)約 10 億千瓦,風(fēng)能儲(chǔ)量非常豐富,開展風(fēng)力發(fā)電是既經(jīng)濟(jì)又高效的方式3。我國風(fēng)力發(fā)電技術(shù)的研究始于 20 世紀(jì) 70 年代末 80 年代初,通過自主研發(fā)小型風(fēng)力發(fā)電機(jī)解決廣大牧區(qū)牧民及一些島嶼上居民的生活生產(chǎn)用電。到 2006 年底,全國已建成約 90 個(gè)風(fēng)電場(chǎng),已經(jīng)建成并網(wǎng)發(fā)電的風(fēng)場(chǎng)主要分布在新疆、內(nèi)蒙、廣東、浙江、河北、遼寧等 16 個(gè)省區(qū),裝機(jī)總?cè)萘窟_(dá)到約 260 萬千瓦。但與國際先進(jìn)水平相比,國產(chǎn)風(fēng)電機(jī)組單機(jī)容量較小,關(guān)鍵技術(shù)依賴進(jìn)口,零部件的質(zhì)量還有待提高。我國2009年新增風(fēng)電裝機(jī)容量13800兆瓦(0.138億千瓦),同比增長高達(dá)124%,新增市場(chǎng)容量超過美國居全球第一;累計(jì)裝機(jī)容量連續(xù)第四年翻番,超越德國和西班牙,規(guī)模排在美國的 35159 兆瓦之後,位居世界第二。中國可再生能源協(xié)會(huì)風(fēng)能專業(yè)委員會(huì)主任賀德馨在風(fēng)能大會(huì)上亦稱,中國今年底風(fēng)電裝機(jī)容量有望達(dá)到40000 兆瓦,去年底為 25800 兆瓦。到 2020 年時(shí)中國風(fēng)電裝機(jī)容量有望達(dá)到 3 億千瓦左右,大幅高于官方最新預(yù)期的 2.3 億千瓦。由此可見,未來我國的風(fēng)力發(fā)電發(fā)展前景非常良好,因此如何設(shè)計(jì)制造出安全高效的風(fēng)力發(fā)電機(jī)就成了很重要的研究課題。 1、 研究目標(biāo)、內(nèi)容和擬解決的關(guān)鍵問題(根據(jù)任務(wù)要求進(jìn)一步具體化)研究目標(biāo): (1) 對(duì)齒輪箱選用合理的結(jié)構(gòu)、增速比和材料。設(shè)計(jì)質(zhì)量好、重量輕、空間體積小、運(yùn)行穩(wěn)定的大容量風(fēng)電機(jī)組齒輪傳動(dòng)系統(tǒng)。(2) 引用風(fēng)力機(jī)的風(fēng)輪葉片設(shè)計(jì)及塔架設(shè)計(jì),從而完成整個(gè)風(fēng)力發(fā)電機(jī)的設(shè)計(jì)。主要內(nèi)容: 本增速箱速箱的結(jié)構(gòu)為二級(jí)行星,一級(jí)斜齒輪,根據(jù)設(shè)計(jì)任務(wù)書的要求合理分配各級(jí)傳動(dòng)比,計(jì)算各級(jí)的齒輪參數(shù),軸承參數(shù),并進(jìn)行校核。選出合理的軸承類型,并對(duì)增速箱尺寸進(jìn)行計(jì)算,以及將各個(gè)部分裝配起來。進(jìn)程:第一階段:開題階段 3月9日至3月20日,收集、查閱和整理設(shè)計(jì)資料,完成3000字的文獻(xiàn)翻譯,完成畢業(yè)實(shí)習(xí)報(bào)告和開題報(bào)告。第二階段:設(shè)計(jì)階段 3月21日-3月28 日,齒輪傳動(dòng)系統(tǒng)方案選擇、傳動(dòng)比分配,傳動(dòng)結(jié)構(gòu)造型等整體方案設(shè)計(jì)與計(jì)算。第三階段:計(jì)算階段 3月29日至4月15日,齒輪、軸、軸承等關(guān)鍵傳動(dòng)結(jié)構(gòu)件的設(shè)計(jì)計(jì)算,繪制零件圖。第四階段:繪圖階段 4月16日至5月 5日,傳動(dòng)系統(tǒng)裝配圖繪制。第五階段:畢業(yè)答辯 5月6日至 5月25日,設(shè)計(jì)計(jì)算說明書的編制、整理、修改、定稿,準(zhǔn)備答辯解決的關(guān)鍵問題風(fēng)力發(fā)電機(jī)床系統(tǒng)主要是將能量由葉輪傳遞至發(fā)電機(jī)。傳動(dòng)系統(tǒng)主要包括主軸、主軸承、齒輪箱、高速軸、聯(lián)軸器等部件。而本課題的主要部分是對(duì)風(fēng)電機(jī)傳動(dòng)系統(tǒng)的設(shè)計(jì),所以有可能遇到的主要問題:(1)準(zhǔn)確對(duì)傳動(dòng)方案的分析;(2)確定齒輪箱的傳動(dòng)比的分配;(3)齒輪尺寸參數(shù)的確定(4)對(duì)軸承的尺寸進(jìn)行確定;(5)選擇合理的軸承類型; (6)對(duì)箱體和總體結(jié)構(gòu)的確定;(7)對(duì)箱體主要部件載荷的計(jì)算和校核; (8)確定冷卻溫度和潤滑系統(tǒng); (9)對(duì)整個(gè)部件的裝配圖和零件圖的繪制;這些問題都是設(shè)計(jì)該風(fēng)機(jī)傳動(dòng)系統(tǒng)的關(guān)鍵問題,在設(shè)計(jì)過程中,將通過查閱有關(guān)文獻(xiàn)資料和向老師咨詢的方法來解決。2、 特色與創(chuàng)新之處:我國的風(fēng)力事業(yè)由于起步晚,特比是兆瓦級(jí)風(fēng)電機(jī)齒輪箱,主要生產(chǎn)設(shè)備長期依賴進(jìn)口。在自主開發(fā)風(fēng)力大型容量發(fā)電機(jī)等方面還比較落后,特別是像齒輪傳動(dòng)系統(tǒng)等技術(shù)領(lǐng)域還存在很大的差異。為此希望減少此差距。按照現(xiàn)在風(fēng)機(jī)裝機(jī)要求,在考慮重量、體積、運(yùn)行穩(wěn)定性的多種情況下,設(shè)計(jì)合理的齒輪箱和增速比,采用合理的材料提高運(yùn)行的壽命。同時(shí)在設(shè)計(jì)繪制零件圖和裝配圖時(shí)廣泛運(yùn)用CAD/CAM/CAE技術(shù)和Pro/e軟件,以提要傳動(dòng)系統(tǒng)運(yùn)行的精度、可靠性、降低傳動(dòng)系統(tǒng)制造成本,提高傳動(dòng)系統(tǒng)標(biāo)準(zhǔn)化水平和傳動(dòng)系統(tǒng)標(biāo)準(zhǔn)件的使用率。 在本次畢業(yè)設(shè)計(jì),本人將全部應(yīng)用CAD/CAE/CAM技術(shù)和soliworks軟件來設(shè)計(jì)傳動(dòng)系統(tǒng)。利用CAD軟件繪制二維裝配圖和零件圖,利用soliworks軟件繪制三維裝配圖和零件圖;大大縮短了設(shè)計(jì)時(shí)間以及畫圖時(shí)間,并提高了設(shè)計(jì)精度還有減小誤差。 3、 擬采取的研究方法、步驟、技術(shù)路線(1)查閱資料,熟悉國內(nèi)外風(fēng)電機(jī)及其傳動(dòng)系統(tǒng)齒輪箱的現(xiàn)狀和發(fā)展趨勢(shì)。(2)理解風(fēng)電傳動(dòng)系統(tǒng)齒輪箱工作原理及結(jié)構(gòu)分析,確定齒輪箱總裝設(shè)計(jì)思路。(3)建立準(zhǔn)確的分析模型,準(zhǔn)確求解受載輪齒的載荷分布。(4)完成主要零部件設(shè)計(jì)并進(jìn)行強(qiáng)度校核。(5)繪制零件加工圖,選定加工工藝。(6)編寫設(shè)計(jì)說明書。4、 擬使用的主要設(shè)計(jì)、分析軟件及儀器設(shè)備主要設(shè)計(jì)、分析軟件: CAD軟件(繪制二維裝配圖和零件圖)soliworks軟件(繪制三維裝配圖和零件圖)儀器設(shè)備: 本課題主要是對(duì)大容量風(fēng)電機(jī)組齒輪傳動(dòng)系統(tǒng)進(jìn)行三維設(shè)計(jì),所采用的設(shè)備儀器是普通計(jì)算機(jī)。 5、 參考文獻(xiàn) B:1 潘存云, 機(jī)械原理M、 長沙、 中南大學(xué)出版社、 2011 2、林景堯、 風(fēng)能設(shè)備使用手冊(cè)、 北京、 機(jī)械工業(yè)出版社、 19923、芮曉明、 風(fēng)力發(fā)電機(jī)組設(shè)計(jì) 北京、 機(jī)械工業(yè)出版社 、20104、姚興佳、 風(fēng)力發(fā)電機(jī)組原理與應(yīng)用北京、 機(jī)械工業(yè)出版社、 20095、趙振宙、 風(fēng)力發(fā)電機(jī)原理與應(yīng)用、北京、 中國水利水電出版社、20116、TonyBurton 、風(fēng)能技術(shù)、 北京、 科學(xué)出版社、 20077、牛山 泉、風(fēng)能技術(shù)、 北京、 科學(xué)出版社、 20098、諾邁士、 風(fēng)電傳動(dòng)系統(tǒng)的設(shè)計(jì)與分析、 上海、上??茖W(xué)技術(shù)出版社、20139、李俊峰、 風(fēng)力 北京、 化學(xué)工業(yè)出版社、200510、李 斌、 未來世界風(fēng)電發(fā)展大趨勢(shì)J、北京、哈爾濱大電機(jī)研究所、200811、劉忠明、風(fēng)力發(fā)電機(jī)齒輪箱設(shè)計(jì)制造技術(shù)的發(fā)展與展望J、機(jī)械傳動(dòng)、200612、成大先、機(jī)械設(shè)計(jì)手冊(cè)第三卷、 北京、 化學(xué)工業(yè)出版社、1993 13、葉偉昌、機(jī)械工程及自動(dòng)化簡明設(shè)計(jì)手冊(cè)、 機(jī)械工業(yè)出版社 14、關(guān)慧貞、機(jī)械制造裝備設(shè)計(jì)、 北京、 機(jī)械工業(yè)出版社 15、濮良貴 紀(jì)名剛、 機(jī)械設(shè)計(jì)、 北京、 高等教育出版社注:1、開題報(bào)告是本科生畢業(yè)設(shè)計(jì)(論文)的一個(gè)重要組成部分。學(xué)生應(yīng)根據(jù)畢業(yè)設(shè)計(jì)(論文)任務(wù)書的要求和文獻(xiàn)調(diào)研結(jié)果,在開始撰寫論文之前寫出開題報(bào)告。2、參考文獻(xiàn)按下列格式(A為期刊,B為專著)A:序號(hào)、作者(外文姓前名后,名縮寫,不加縮寫點(diǎn),3人以上作者只寫前3人,后用“等”代替。)、題名、期刊名(外文可縮寫,不加縮寫點(diǎn))年份、卷號(hào)(期號(hào)):起止頁碼。B:序號(hào)、作者、書名、版次、(初版不寫)、出版地、出版單位、出版時(shí)間、頁碼。3、表中各項(xiàng)可加附頁。5NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at /bridge Available for a processing fee to U.S. Department of Energy and its contractors, in This paper describes a new research and development initiative to improve gearbox reliability in wind turbines begun at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, USA. The approach involves a collaboration of NREL staff, expert consultants, and partners from the wind energy industry who have an interest in improving gearbox reliability. The membership of this collaborative is still growing as the project becomes more defined, but the goal is to include representatives ranging from the operators, owners, wind turbine manufacturers, gearbox manufacturers, bearing manufacturers, consultants, and lubrication industries. The project is envisioned to be a multi-year comprehensive testing and analysis effort. This will include complementary laboratory and field testing on a 600 to 750-kW turbine and gearbox of a configuration that exhibits reliability problems common to a broad population of turbines. The project will target deficiencies in the design process that are contributing to substantial shortfalls in service life for most designs. New design-analysis tools will be developed to model the test configuration in detail. This will include using multi-body dynamic analysis to model wind turbine loading, coupled to internal loading and deformations of the gearbox. Intellectual property conflicts will be minimized by maintaining a test configuration that does not replicate any specific manufacturers wind turbine model precisely, but represents a common configuration. Background The wind energy industry has experienced high gearbox failure rates from its inception 1. Early wind turbine designs were fraught with fundamental gearbox design errors compounded by consistent under-estimation of the operating loads. The industry has learned from these problems over the past two decades with wind turbine manufacturers, gear designers, bearing manufacturers, consultants, and lubrication engineers all working together to improve load prediction, design, fabrication, and operation. This collaboration has resulted in internationally recognized gearbox wind turbine design standards 2. Despite reasonable adherence to these accepted design practices, wind turbine gearboxes have yet to achieve their design life goals of twenty years, with most systems requiring significant repair or overhaul well before the intended life is reached 3,4,5. Since gearboxes are one of the most expensive components of the wind turbine system, the higherthan-expected failure rates are adding to the cost of wind energy. In addition, the future uncertainty of gearbox life expectancy is contributing to wind turbine price escalation. Turbine manufacturers add large contingencies to the sales price to cover the warranty risk due to the possibility of premature gearbox failures. In addition, owners and operators build contingency funds into the project financing and income expectations for problems that may show up after the warranty expires. To help bring the cost of wind energy back to a decreasing trajectory, a significant increase in long-term gearbox reliability needs to be demonstrated. In response to design deficiencies, modification and redesign of existing turbines is a continual process in current production units, but it is difficult to validate the effectiveness of the modifications in a timely manner to assure that multiple units with unsatisfactory “solutions” are not deployed. Presently, gear manufacturers introduce modifications to new models, replacing a deficient component with a re-engineered one that is 1 thought to deliver higher performance. To test these new designs, the re-engineered gearboxes are installed and a field evaluation process begins. This approach may eventually lead to the reliability goals needed, but it may take many years to develop the needed confidence in a solution, and reduce the uncertainty to a level where it will reduce turbine costs. By that time, the wind turbine industry may have moved to larger turbines or different drivetrain arrangements that could invalidate these solutions. Moreover, the fundamental failure mechanisms of the original problem may never be understood, making it easier for design unknowns to be inadvertently propagated into the next generation of machines. This paper summarizes a long-term NREL/DOE project to explore options to accelerate improvements in wind turbine gearbox reliability by addressing the problems directly within the design process. In the execution of this program, our intentions are to improve the accuracy of dynamic gearbox testing to assess gearbox and drivetrain options, problems, and solutions under simulated field conditions. The project will evaluate the wide range of possible load events that comprise the design load spectrum 6, and how critical design-load cases 7 may translate into unintended bearing and gear responses such as misalignment, bearing slip, and axial motion. NREL has made a commitment to address gearbox reliability as a major part of its research agenda, and plans to engage a wide range of stakeholders including researchers, consultants, bearing manufacturers, gearbox manufacturers, wind turbine manufacturers, and wind turbine owner/operators to form a gearbox reliability collaborative (GRC). The collaborative will address major gearbox issues with the common goal of increasing overall reliability of wind turbines. The approach will involve three major technical efforts which include field testing, dynamometer testing, and drivetrain analysis. These elements make up a comprehensive strategy that will address the true nature of the problem and hopefully spark a spirit of cooperation that can lead to better gearboxes. Observations on the Basic Problems While it is premature to draw firm conclusions about the nature of these failures, some reasonable observations have been made to help narrow the course and scope of this project. 1. Most of the problems with the current fleet of wind turbine gearboxes are generic in nature, meaning that the problems are not specific to a single gear manufacturer or turbine model. Over the years, most wind turbine gearbox designs have converged to a similar architecture with only a few exceptions. Therefore, there is an opportunity to collaborate among the many stakeholders in the wind turbine gearbox supply chain to find root causes of failures and investigate solutions that may advance the collective understanding of the industry. 2. The preponderance of gearbox failures suggests that poor adherence to accepted gear industry practices, or otherwise poor workmanship, is NOT the primary source of failures. Of course, some failures have been directly attributed to quality issues, and further improvements in this area are not precluded from consideration, but we assume that manufacturers are capable of identifying and correcting quality control problems on their own if they choose to do so. Therefore, the target of this project will be the greater problem of identifying and correcting deficiencies in the design process that may be diminishing the life of the fleet. 3. Most gearbox failures do not begin as gear failures or gear-tooth design deficiencies. The observed failures appear to initiate at several specific bearing locations under certain applications, which may later advance into the gear teeth as bearing debris and excess clearances cause surface wear and misalignments. Anecdotally, field-failure assessments indicate that up to 10% of gearbox failures may be manufacturing anomalies and quality issues that are gear related, but this is not the primary source of the problem. 4. The majority of wind turbine gearbox failures appear to initiate in the bearings. These failures are occurring in spite of the fact that most gearboxes have been designed and developed using the best bearing-design practices available. Therefore, the initial focus of this project will be on discovering weaknesses in wind turbine gearbox bearing applications and deficiencies in the design process. 2 Furthermore, we believe that the problems that manifested themselves in the earlier 500-kW to 1000kW sizes five to ten years ago still exist in many of the larger 1 to 2 MW gearboxes being built today with the same architecture. As such, it is likely that lessons learned in solving problems on the smaller scale can be applied directly to future wind turbines at a larger scale, but with less cost. Using these observations to help bound the problem, we reason that the accepted design practices that are applied successfully throughout other industrial bearing applications must be deficient when applied to wind turbine gearboxes. This characterization is based primarily on anecdotal field-failure data, and the experience of gear and bearing experts who have studied the problems for many years. Unfortunately, the available analytical methods to assess design life in typical gearbox designs are not accurate enough to shed much light on this problem, so much of the investigation must be conducted empirically. A major factor contributing to the complexity of the problem is that much of the bearing design-life assessment process is proprietary to the bearing manufacturers. Gearbox designers, working with the bearing manufacturers, initially select the bearing for a particular location and determine the specifications for rating. The bearing manufacturer then conducts a fatigue life rating analysis to determine if the correct bearing has been selected for the specific application and location. Generally, a high degree of faith is required to accept the outcome of this analysis because it is done with little transparency. Even though bearing manufacturers claim adherence to international bearing- rating standards (ISO 281:2007 8), each manufacturer uses its internally developed design codes that have the potential to introduce significant differences that can affect actual calculated bearing life without revealing the details to customers. A new code is needed in the public domain that will give the industry a common method for due diligence in bearing design 9. Moreover, since the bearing manufacturers do not have broad or intimate knowledge of gearbox system loads and responses that may be contributing to unpredicted bearing behavior beyond the bearing mounting location such as housing deformations, they are not capable of making valid root-cause analyses on their own. A broader collaboration of the various stakeholders, each of whom holds a piece of the answer, is clearly needed. Gearbox Reliability Collaborative Many of the gearbox problems described above may be the direct result of institutional barriers that hinder communication and feedback during the design, operation, and maintenance of turbines. In isolation, it is very difficult for single entities in the supply chain to find proper solutions. Hence, a collaborative is needed to bring together the various portions of the design process, and to share information needed to address the problems. This promises to be one of the more challenging parts of this project, as information sharing introduces perceived risk to the protection of intellectual property, which is guarded dearly by most companies. A goal of this project is to establish this cooperative framework while protecting the intellectual property rights of all parties. These concerns will be addressed through legal agreements with NREL, and will be further mitigated since the project does not focus on any manufacturers specific design. The collaborative is operated by NREL staff and expert consultants hired by NREL to guarantee privacy of commercially sensitive information and data. In addition, a goal of the collaborative is to engage key representatives of the supply chain, including turbine owners, operators, gearbox manufacturers, bearing manufacturers, lubrication companies, and wind turbine manufacturers. Each party holds information and experience that is needed to guide the project, supply the components, and interpret results of the test. The collaborative partners will benefit by having input throughout the testing setup and execution, and will have access to data within the agreements established by the cooperative. Results will be released by the GRC as agreed upon by its members. Generic Wind Turbine Drivetrain Architecture The selected configuration is comprised of a single main bearing upwind of the gearbox with rear non-locating support bearings inside the gearbox. Trunnion mounts on either side of the gearbox are used to attach it to a mainframe or bedplate, typically through elastomeric bushings used to dampen noise and vibrations. Torque reactions are resolved through the trunnion support assembly that is normally an integral part of the gear housing. The external geometry of this configuration is shown in The low speed stage of the gearbox is a planetary configuration with either spur or helical gears. The sun pinion drives a parallel intermediate shaft that in turn drives a high speed stage. Both the intermediate and high speed stages use helical gears. A generalized schematic of a typical wind turbine gearbox is shown in Figure 2. 4 Critical bearing locations are defined as places that have exhibited a high percentage of application failures in spite of the use of best current design practices. In the generic configuration, there are three critical bearing locations that we have identified: 1. Planet bearings 2. Intermediate shaft-locating bearings 3. High-speed locating bearings Each location has exhibited a relatively high degree of bearing failures with a relatively low dependence on machine size, machine make, or model. A Three Point Plan As previously mentioned, some aspects of the wind turbine, gearbox, and bearing design process are preventing gearboxes from reaching expected life. These deficiencies could be the result of many factors, including: ? the possibility that one or more critical design-load cases were not accounted for in the design load spectrum, ? that transfer of loads (both primary torque loads and non-torque loads) from the shaft and mounting reactions is occurring in a non-linear or unpredicted manner, or ? that components within the gearbox (especially the bearings) are not uniformly specified to deliver the same level of reliability. Due to the complexity of this problem, a comprehensive approach that expands our existing base of knowledge and capabilities will be required. Under this project, NREL plans an integrated three-pronged approach of analysis, dynamometer testing, and field testing as shown in Figure 3. Figure 3 - Comprehensive Strategy to Investigate Wind Turbine Gearbox Reliability 5 Laboratory testing of a representative instrumented drivetrain in the NREL 2.5-MW dynamometer will be coordinated with parallel field tests on an identical instrumented drivetrain conducted at a nearby wind farm site. With the benefit of hindsight, the selected drivetrain will be upgraded prior to testing to current state-ofthe-art to eliminate known design weaknesses and quality issues as best as possible. These upgrades may include different bearing types, cooling and filtration system upgrades, lubrication changes, and gear tooth modifications. The test specimens will therefore not be precise representations of any manufacturers design. The laboratory and field measurements will be validated with dynamic analysis using an accurate structural-system model of the selected drivetrain. The test will be based on a 600 to 750-kW wind turbine selected by a committee of expert gearbox consultants hired by NREL under the GRC. The exact details of the drivetrain to be tested and analyzed are confidential to the members of the GRC. Project success will be highly dependent on making the right measurements that correctly characterize the behavior of the critical bearings under various loading scenarios. Instruments will be developed and installed to capture data about significant loads, deflections, thermal effects, dynamic responses and events, and changes to the condition of the lubricant. Critical loads measurements will include shaft bending and torque on the input shafts, but also measurements of how load sharing varies dynamically from one planet bearing to another. Similarly, measurements will be made to determine how the load is being shared between bearings axially along a single planet shaft. Displacement sensors to make continuous measurements will be installed internally, if possible, wherever gear tooth clearances or alignments of the gears might be affected. These locations may include bearing inner ring to outer ring alignments and clearances, shaft axial motions, bearing slip (inner or outer motions or bearing components), roller slipping or skidding, combined roller slip, relative motion of carrier to housing, sun pinion displacement relative to carrier, sun-pinion axial motion, housing stiffness, and displacement measurements of housing. We anticipate that certain locations will be difficult to access with standard instrumentation. Temperature measurements will be made at all critical bearing locations, including the inner rings, the outer rings, and planet bearings. Lubrication monitoring will include bulk sump temperature, cleanliness (e.g., particulate, ferrous, additive, and water), and filter debris. Laboratory analysis will be conducted frequently on all test specimens. The test data will be analyzed and correlated to look for bearing behavior that is unexpected, non-linear, or is suspect under a wide range of input conditions. If this behavior can be correctly documented and understood, it may not be necessary to reproduce every type of bearing failure if subsequent analysis can demonstrate that certain abnormal behavior can result in loss of bearing life. Dynamometer Testing The National Renewable Energy Laboratory operates a 2.5-MW dynamometer test facility funded by the U.S. Department of Energy at its National Wind Technology Center in Golden, CO that is dedicated to the testing of wind turbine drive trains 12. Since 1999, this facility has been in continuous operation providing testing services to prototype and production wind turbine drive trains up to 2 MW in size. NREL plans to use this facility and its support staff to conduct full-scale tests on the 750-kW drivetrain selected. A schematic of the facility is shown in Figure 4. One of the benefits of using a full scale drive-train test facility is that the time to evaluate new configurations can be reduced by an order of magnitude or more (compared to field testing) since loading conditions can be repeated and accelerated as needed. Instrumentation is easier to install and maintain, and the results can often be observed first-hand from a safe vantage point. One limitation is that the prescribed loading in the test facility is currently capable of applying only low-speed shaft torque with a very simple single-point transverse load (up to 100 kips) that might represent shaft bending load due to gravity, but not in a dynamic situation. Plans are underway to upgrade the facility to enable more complex dynamic-load combinations, including low-speed shaft bending in two directions, shear loading, as well as a reversing axial thrust component. This additional loading capability will enable better simulation of the actual field conditions in real-time operation. Another potential problem is that the transfer function between external shaft loading and internal gearbox responses may not be the same in the dynamometer as it is on the turbine under field operation due to differences in mounting stiffness or component inertia. Initial testing will examine and characterize these effects to establish a valid correlation between field tests and laboratory results. Of critical importance will be showing how anomalous events such as non-linear bearing responses might be contributing to the premature failures. 480 V 575 V 690 V Figure 4 Schematic of NREL 2.5 MW Dynamometer Test Facility Figure 5 Ponnequin Windfarm Test Site Northern Colorado USA 13 Field Testing Field testing will be conducted at the Ponnequin windfarm shown in Figure 5, which is owned and operated by Xcel Energy. 7 Field testing will be conducted on a wind turbine with the identical gearbox configuration as the drive train that is tested in the NREL dynamometer. The primary purpose of the field test is to measure the loading characteristics of the turbine under field operation, and record all the design load cases and their corresponding reactions and responses that are generated at the critical bearing locations identified above. These measured field loads will be required to correlate the measured responses in the dynamometer test facility generated under the same loading. Due to difference between the stiffness of the drivetrain mounting in the dynamometer, system inertias, and other configuration modifications, the dynamometer responses may need to be tuned to match field conditions. Drivetrain Analysis Drivetrain analysis tools will be developed to model the internal gear and bearing load reactions, and internal displacements and motion under simulated field conditions. Similar analyses have been performed to investigate the multi-body dynamics of gears and shafts, but bearing behavior was not considered 14. The analysis will use multi-body dynamic analysis to relate the global rotor loads calculated using the FAST wind turbine code to the subcomponent level of the inside of the gearbox 15. Accurate geometry and stiffness properties for each of the gearbox elements (including gear housing, shafts, bearings, and gears) will be represented using SimPack software 16. A preliminary model is shown in Figure 6. Commercially available gear design, analysis, and rating software (GEARCALC 17, RIKOR 18, LVR 19) will be used to assess the gear tooth loads, and establish load capacity limits for the “as built” gearbox. The model will be tuned using inputs from dynamic analysis, field test results, and dynamometer testing through an iterative process. A similar approach will be utilized with gear rating codes by working with a bearing design partner (using their in-house codes) and in validating public domain bearing-rating software now under development. Figure 6 - Preliminary Model of Gearbox using SimPack software By building this modeling capability, future designers will benefit by having a validated design process that is capable of developing and identifying critical load cases for gearbox design. Predicting gearbox load responses to specified load conditions that can be measured in the field will also be modeled. The validated model will be useful in extrapolating to extreme or rare-event load cases that may not be easy to capture in the field or apply in the dynamometer test stand. Drive train solutions can be simulated in the validated model before implementing them in the laboratory or field, which will reduce the design-loop cycle time and allow more solutions to be assessed while building confidence in the proposed solution. We anticipate that ultimately, the combined testing and analysis efforts can help refine the design process and contribute significantly to better practices and improved system reliability. Conclusions The wind industry has reached a point where design practices for gearboxes do not result in sufficient life, and institutional barriers are hindering forward progress. A new approach is needed to overcome these barriers and accelerate the development of more robust gearbox designs. The Gearbox Reliability Collaborative initiated at NREL provides a fresh approach toward better gearboxes that combines the resources of key members of the supply chain to investigate design-level root causes of field problems and solutions that will lead to higher gearbox reliability. Acknowledgments The authors would like to acknowledge the contributions of several individuals that have helped formulate the ideas and actions expressed in this paper including Don McVittie, Bob Errichello, Ed Hahlbeck, Ted DeRocher, Jim Johnson, Francisco Oyague, Jason Cotrell, Hal Link, Jonathan White, Thomas Jonsson, Roger Hill, Marty Block, and Ken Bolin. In addition, the U.S. Department of Energy is recognized for its continued support on this project. 摘要 這份報(bào)告描述了一個(gè)新的研究和發(fā)展倡議來證明風(fēng)速渦輪箱中齒輪箱的可靠性,起始于美國科羅拉多州古登國家能源實(shí)驗(yàn)室(NREL)。該方法涉及到來自于NREL全員的合作項(xiàng)目,專家顧問和來自風(fēng)能產(chǎn)業(yè)的搭檔,對(duì)提提高齒輪箱可靠性感興趣的人。該合作項(xiàng)目的團(tuán)隊(duì)成員仍在一直增加隨著項(xiàng)目變得越來越明確,不過目標(biāo)包括代表從運(yùn)營商、業(yè)主、風(fēng)力渦輪機(jī)、齒輪制造商、軸承制造商、顧問和輪滑油制造商。該項(xiàng)目被構(gòu)想成一個(gè)需要多年的綜合測(cè)試和分析工作。這將包括互補(bǔ)實(shí)驗(yàn)室和現(xiàn)場(chǎng)測(cè)試在600至750千瓦渦輪機(jī)和變速箱配置具有可靠性問題和大部分的渦輪機(jī)種類相同,該項(xiàng)目的目標(biāo)設(shè)計(jì)過程的缺陷將對(duì)大多數(shù)設(shè)計(jì)壽命大量短缺問題做出貢獻(xiàn)。新的設(shè)計(jì)分析工具將制定詳細(xì)的測(cè)試配置模型。這將包括使用多體動(dòng)力學(xué)分析模型風(fēng)機(jī)的載荷,連接到變速箱內(nèi)部載荷和變形。知識(shí)產(chǎn)權(quán)的沖突將通過堅(jiān)持使用一個(gè)測(cè)試配置,不會(huì)復(fù)制任何特定制造商的風(fēng)電機(jī)組模型,降到最小化,不過代表了一種普遍的配置。背景風(fēng)能產(chǎn)業(yè)層經(jīng)歷過高的變速箱失敗率在制造初期,早期的風(fēng)力渦輪機(jī)設(shè)計(jì)充滿了基本的變速箱設(shè)計(jì)錯(cuò)誤由一 致過低估算的操作負(fù)荷導(dǎo)致。這個(gè)行業(yè)通過在過去的20年里與風(fēng)機(jī)制造商,設(shè)計(jì)者齒輪,軸承制造商,顧問,和潤滑工程師一起工作,提高負(fù)荷預(yù)測(cè),設(shè)計(jì),制造,經(jīng)營了解到這些問題。這種合作導(dǎo)致了在國際公認(rèn)的變速風(fēng)力發(fā)電機(jī)組的設(shè)計(jì)標(biāo)準(zhǔn)。盡管合理的遵守這些接受風(fēng)機(jī)齒輪箱的設(shè)計(jì)實(shí)踐,這些風(fēng)電渦輪機(jī)已經(jīng)達(dá)到二十年壽命的設(shè)計(jì)目標(biāo),不過大多數(shù)系統(tǒng)需要重大修理或大修前的預(yù)期壽命達(dá)到。由于齒輪箱是風(fēng)力渦輪機(jī)系統(tǒng)的最昂貴的部件,這比預(yù)期的故障率增加風(fēng)能的成本。此外,變速箱的壽命,未來的不確定性是導(dǎo)致風(fēng)機(jī)價(jià)格升級(jí)。渦輪制造商的銷售價(jià)格加入了擔(dān)保風(fēng)險(xiǎn)為了支付過早變速箱故障的可能性。此外,業(yè)主和運(yùn)營商建立應(yīng)急基金可能出現(xiàn)保修期滿后,項(xiàng)目融資和收入預(yù)期的問題。使風(fēng)電成本回下降的軌跡,在長期的變速箱可靠性顯著增加需要證明。針對(duì)設(shè)計(jì)中存在的不足,渦輪機(jī)的改造和重新設(shè)計(jì)是一個(gè)持續(xù)的過程目前的生產(chǎn)單位,但它是難以驗(yàn)證,及時(shí)修改的有效性保證不滿意的“解決方案”的多個(gè)單位不部署。目前,齒輪制造商引入新的模型修改,用重新設(shè)計(jì)的取代不足的部分被認(rèn)為能夠提高性能。為了測(cè)試這些新的設(shè)計(jì),安裝了重新設(shè)計(jì)的變速箱并且重新開始現(xiàn)場(chǎng)評(píng)估過程。這種方法可能最終達(dá)到所需要的可靠性目標(biāo),但卻可能需要很多年發(fā)展解決法案到所需要的信心和將不確定性減少到一個(gè)水平,這將減少渦輪機(jī)成本。到那時(shí),風(fēng)力發(fā)電行業(yè)可能已經(jīng)轉(zhuǎn)發(fā)張到更大的渦輪機(jī)或不同傳動(dòng)系統(tǒng)的安排可以證明這些方案是錯(cuò)誤的。此外,原問題的基本失效機(jī)理可能永遠(yuǎn)不會(huì)理解,這使得設(shè)計(jì)未能得到解釋的部分在無意中傳播到下一代機(jī)器更容易。本文總結(jié)了長期的NREL/DOE計(jì)劃探討選擇的問題,直接在設(shè)計(jì)過程中加快風(fēng)電齒輪箱的可靠性改進(jìn)。在這個(gè)計(jì)劃的執(zhí)行,我們的意圖是提高動(dòng)態(tài)測(cè)試精度評(píng)估變速箱變速箱和傳動(dòng)系統(tǒng)的選擇,問題和模擬現(xiàn)場(chǎng)條件下的解決方案。該項(xiàng)目將評(píng)估可能的負(fù)載的事件,包括設(shè)計(jì)載荷譜寬范圍,以及如何設(shè)計(jì)臨界荷載的情況下可能轉(zhuǎn)化為意想不到的軸承和齒輪的反應(yīng)如不對(duì)中,軸承打滑,和軸向運(yùn)動(dòng)。NREL已經(jīng)承諾解決變速箱可靠性的研究議程的一個(gè)重要組成部分,并計(jì)劃從事廣泛的利益相關(guān)者包括研究人員,顧問,軸承制造商,變速箱制造商,制造商,和風(fēng)力渦輪機(jī)的所有者/經(jīng)營者形成一個(gè)變速箱可靠性協(xié)同(GRC)。協(xié)同主要將針對(duì)變速箱問題與提高風(fēng)力發(fā)電機(jī)組的整體可靠性的共同目標(biāo)。這種方法將包括三個(gè)主要技術(shù)工作,包括現(xiàn)場(chǎng)測(cè)試,測(cè)功機(jī)測(cè)試和傳動(dòng)系統(tǒng)的分析。這些元素構(gòu)成了一個(gè)全面的戰(zhàn)略,將解決真正本質(zhì)的問題和充滿希望的點(diǎn)燃合作精神的火花,可以帶來更好的變速箱。對(duì)基本問題的觀察然而對(duì)這些故障的性質(zhì)得出確切的結(jié)論還為時(shí)過早,一些合理的意見已以幫助縮小這個(gè)項(xiàng)目的過程和范圍大部分的風(fēng)電齒輪箱的問題在本質(zhì)上是通用的,這意味著問題不是一個(gè)單一的齒輪制造商或水輪機(jī)模型。多年來,大多數(shù)風(fēng)電齒輪箱的設(shè)計(jì)已經(jīng)收斂到一個(gè)類似的建筑只有少數(shù)例外。因此,有一個(gè)合作的機(jī)會(huì),在風(fēng)電齒輪箱的供應(yīng)鏈利益相關(guān)者之間找到失敗的根本原因并探討解決方案,推進(jìn)行業(yè)集體的理解。齒輪箱故障的數(shù)量繁多表明不遵守公認(rèn)的齒輪行業(yè)的做法和做工差,不是失敗的主要來源。當(dāng)然,有些失敗是直接歸因于質(zhì)量問題,在這方面的進(jìn)一步改善,不排除考慮,但我們認(rèn)為如果他們選擇這樣做,制造商能通過自身識(shí)別和糾正質(zhì)量控制問題。因此,本項(xiàng)目的目標(biāo)將是更大的問題的識(shí)別和糾正設(shè)計(jì)過程中的不足之處,哪些可能會(huì)在生活中忽略的東西。大多數(shù)的變速箱故障不在齒輪故障或齒輪齒的設(shè)計(jì)缺陷。所觀察到的故障出現(xiàn)啟動(dòng)在幾個(gè)特定的軸承位置在某些應(yīng)用中,以后可提前進(jìn)入齒輪軸承碎片和多余的間隙造成表面磨損和失調(diào)。有趣的是,現(xiàn)場(chǎng)故障評(píng)估顯示了齒輪箱故障10%可以制造異常,齒輪相關(guān)的質(zhì)量問題,但這不是問題的主要來源。4.風(fēng)力發(fā)電齒輪箱的故障大多數(shù)出現(xiàn)在軸承啟動(dòng)。這些失敗的事實(shí),大多數(shù)的變速箱已被設(shè)計(jì)和使用最好的軸承設(shè)計(jì)實(shí)踐,盡管發(fā)生了。因此,這個(gè)項(xiàng)目最初的重點(diǎn)將是發(fā)現(xiàn)的弱點(diǎn)和不足,風(fēng)機(jī)齒輪箱軸承應(yīng)用在設(shè)計(jì)過程中。5.此外,我們認(rèn)為,問題,表現(xiàn)在早期的500千瓦1000千瓦尺寸五到十年前在許多大1至2兆瓦變速箱具有相同的建筑今天依然存在。因此,它是可能的經(jīng)驗(yàn)教訓(xùn),在解決小規(guī)模的問題,可以直接應(yīng)用到未來的風(fēng)力渦輪機(jī)在更大的規(guī)模,但用更少的成本。通過這些觀察有助于約束的問題,我們推理出公認(rèn)的設(shè)計(jì)實(shí)踐,成功地應(yīng)用在其他工業(yè)軸承的應(yīng)用程序必須在應(yīng)用于風(fēng)機(jī)齒輪箱的缺陷。這種特征主要是基于傳聞的現(xiàn)場(chǎng)故障數(shù)據(jù)和經(jīng)驗(yàn),對(duì)齒輪和軸承的專家已經(jīng)研究了多年的問題。不幸的是,現(xiàn)有的分析方法評(píng)估典型的變速箱設(shè)計(jì)壽命是不夠準(zhǔn)確,在這個(gè)問題上透露太多,太多的必須進(jìn)行調(diào)查,實(shí)證分析。導(dǎo)致這個(gè)問題的復(fù)雜性的一個(gè)主要因素是,大部分的軸承設(shè)計(jì)壽命評(píng)估過程是專有的軸承制造商、變速箱設(shè)計(jì)、與軸承制造商工作,最初選擇一個(gè)特定位置的軸承和確定等級(jí)規(guī)格。軸承制造商進(jìn)行了疲勞壽命評(píng)估分析確定正確的軸承已被選定為定位的具體應(yīng)用。一般來說,高度的信仰需要接受這
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
提示  人人文庫網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。
關(guān)于本文
本文標(biāo)題:5MW海上風(fēng)電機(jī)組齒輪傳動(dòng)系統(tǒng)設(shè)計(jì)說明書CAD
鏈接地址:http://ytny.net.cn/paper/105853850.html

官方聯(lián)系方式

2:不支持迅雷下載,請(qǐng)使用瀏覽器下載   
3:不支持QQ瀏覽器下載,請(qǐng)用其他瀏覽器   
4:下載后的文檔和圖紙-無水印   
5:文檔經(jīng)過壓縮,下載后原文更清晰   
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

網(wǎng)站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文庫版權(quán)所有   聯(lián)系電話:400-852-1180

備案號(hào):蜀ICP備2022000484號(hào)-2       經(jīng)營許可證: 川B2-20220663       公網(wǎng)安備川公網(wǎng)安備: 51019002004831號(hào)

本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知人人文庫網(wǎng),我們立即給予刪除!