中文字字幕乱码视频,亚洲av无码乱码在线观看富二代,亚洲乱妇亚洲乱妇xinglu,亚洲日韩乱码中文无码蜜桃臀,亚洲精品无码久久久久久久

震壓機(jī)構(gòu)圖00.dwg
震壓機(jī)構(gòu)圖00.dwg
編號(hào):102079509    類型:共享資源    大?。?span id="z3jilz61osys" class="font-tahoma">4.95MB    格式:ZIP    上傳時(shí)間:2020-11-09 上傳人:遺**** IP屬地:湖北
尺寸:835x596像素    分辨率:96dpi   顏色:RGB    工具:
20
積分
關(guān) 鍵 詞:
FZYJ 12翻臺(tái)式震壓造型機(jī) 12 臺(tái)式 造型機(jī)
資源描述:
FZYJ — 12翻臺(tái)式震壓造型機(jī),FZYJ,12翻臺(tái)式震壓造型機(jī),12,臺(tái)式,造型機(jī)
內(nèi)容簡(jiǎn)介:
中國(guó)礦業(yè)大學(xué)2008屆畢業(yè)設(shè)計(jì)論文 第63頁1 緒 論1.1引言裝備一個(gè)鑄造車間,需要熔煉設(shè)備、造型及制芯設(shè)備、砂處理設(shè)備、鑄件清洗設(shè)備以及各種運(yùn)輸機(jī)械,通風(fēng)除塵設(shè)備等。只有設(shè)備配套,才能形成生產(chǎn)能力。因此我們需要大力研制和生產(chǎn)成套的、高質(zhì)量高效率的鑄造設(shè)備。震壓式造型機(jī)是一種依靠震擊緊實(shí)和低壓壓實(shí)砂型的造型機(jī)械,生產(chǎn)的砂型質(zhì)量穩(wěn)定并有較高的精度和剛度,尤其是采用氣動(dòng)微震式震擊機(jī)構(gòu)的震壓造型機(jī)的型面利用率在75 %80 %左右,生產(chǎn)的砂型硬度(B 型硬度計(jì)) 可達(dá)7585 ,具有較高的造型速度和較低的勞動(dòng)強(qiáng)度。因此,震壓式造型機(jī)雖然存在著效率低、噪音大、操作工人勞動(dòng)強(qiáng)度高、不能滿足現(xiàn)代化生產(chǎn)發(fā)展的缺點(diǎn),但該機(jī)經(jīng)濟(jì)效益高、投資少、上馬快,而且結(jié)構(gòu)簡(jiǎn)單、操作維修方便、靈活性大、適應(yīng)性廣,能滿足絕大多數(shù)造型工藝的要求及各種批量的生產(chǎn),在我國(guó)的中、小型鑄造車間得到了廣泛的應(yīng)用。我國(guó)中小型鑄造車間機(jī)械化造型,主要使用的是震擊式和震壓式造型機(jī),如Z145型震壓式造型機(jī)多年前就已經(jīng)在國(guó)內(nèi)廣泛使用,由于震擊與震壓式造型機(jī)噪音大, 生產(chǎn)率低等問題,國(guó)內(nèi)大部分已采用微震壓實(shí)造型機(jī)。氣動(dòng)微震機(jī)構(gòu)因具有高效、節(jié)能、減震,以及可以實(shí)現(xiàn)壓震,利用動(dòng)壓實(shí)力等特點(diǎn),被廣泛用于微震壓實(shí)造型機(jī)和多觸頭高壓造型機(jī)中。按照支撐結(jié)構(gòu)不同,氣動(dòng)微震機(jī)構(gòu)可以分為彈簧氣動(dòng)微震機(jī)構(gòu)和氣墊微震機(jī)構(gòu)兩大類。我在此選擇的是彈簧式氣動(dòng)微震機(jī)構(gòu)的設(shè)計(jì),參照此類造型機(jī)的相關(guān)技術(shù)與標(biāo)準(zhǔn),設(shè)計(jì)出實(shí)習(xí)用震壓造型機(jī)1.2造型機(jī)機(jī)械概述1.2.1造型機(jī)的發(fā)展從二十世紀(jì)二十年代到五十年代左右,氣動(dòng)震壓是造型機(jī)一直是鑄造車間中最主要的造型設(shè)備,之后又出現(xiàn)了多觸頭高壓造型機(jī)、射壓造型機(jī)等現(xiàn)代化自動(dòng)造型設(shè)備,特別是傳統(tǒng)的砧座式震壓機(jī)構(gòu)被氣動(dòng)微震機(jī)構(gòu)所取代,產(chǎn)生新型的氣動(dòng)微震壓實(shí)造型機(jī),原有的震壓式造型機(jī)就處于被淘汰的地位。氣動(dòng)微震壓實(shí)造型機(jī)的主要特點(diǎn)是壓實(shí)的同時(shí)進(jìn)行震擊,因此可得到緊實(shí)度分布良好的砂型。另外氣動(dòng)微震壓實(shí)造型機(jī)生產(chǎn)率高,振動(dòng)較小,對(duì)基礎(chǔ)要求低,噪音小等特點(diǎn)。從目前來看,國(guó)內(nèi)外早己用氣動(dòng)微震壓實(shí)造型機(jī)逐步代替震擊式和震壓式造型機(jī)。此間,國(guó)外鑄造設(shè)備在機(jī)械設(shè)計(jì)、材料選用、制造精度以及控制系統(tǒng)方面與過去相比都有顯著提高。由于吸取了組合機(jī)床設(shè)計(jì)的經(jīng)驗(yàn),使各類鑄造設(shè)備在產(chǎn)品系列化、零部件通用化方面有了新的進(jìn)展。這對(duì)于設(shè)計(jì)、制造和使用、維修都帶來了很大的方便。比如,一條造型自動(dòng)線可以按照使用工廠的具體要求,基本上由通用的部件組合為主、輔機(jī)并配成生產(chǎn)線。在控制系統(tǒng)中,普遍采用電氣或電子控制,現(xiàn)在大部分都已采用電子計(jì)算機(jī)控制。我國(guó)的鑄造機(jī)械水平總的來說還不高,與工業(yè)發(fā)達(dá)國(guó)家相比有明顯的差距,主要表現(xiàn)在:1.品種少。2.專業(yè)廠制造水平低。3.設(shè)備結(jié)構(gòu)落后,效率低,能耗高,可靠性差。4.計(jì)算機(jī)的應(yīng)用。1.2.2造型機(jī)的類型造型機(jī)械主要是將造型機(jī)的兩個(gè)基本操作過程機(jī)械化,即實(shí)砂和起模工作的機(jī)械化,由此造型機(jī)械的分類可以:按照實(shí)砂分類, 2)按照起模來分類。此外,造型機(jī)的傳動(dòng)方式也不同,因此,造型機(jī)更可以:3)按照傳動(dòng)方式分類。第一,按照實(shí)砂的各種方法 ,造型機(jī)可以分類為:1)手工造型機(jī);2)擠壓造型機(jī);3)震擊造型機(jī); 4)拋砂機(jī); 5)特殊造型機(jī)(其實(shí)砂方法與上面幾類不同)。型砂的沖實(shí)過程與實(shí)度,無論型砂還是芯砂都是一粒一粒的砂四周混雜著一些粘合劑,砂與砂之間用粘合劑連接起來,成為一塊一塊的砂團(tuán),有一定的強(qiáng)度,如果將砂散成疏松的狀態(tài),就沒有任何強(qiáng)度。這樣的砂放在砂箱中,將砂箱倒轉(zhuǎn)過來,型砂就可能全部漏出來。假如用一定力量將型砂壓實(shí),砂礫與砂礫之間就相互移動(dòng),使得砂礫之間的間隙減小,同時(shí)體積也縮小,型砂就有很大的強(qiáng)度。型砂的砂礫之間相互擠得愈緊湊,相互的接觸處也愈多,型砂的強(qiáng)度也就愈大。在一種理想的情況下(實(shí)際上是不可能的)如果型砂的砂礫之間全面接觸,使砂礫之間沒有任何間隙,那么型砂的強(qiáng)度也就最大。其次型砂的強(qiáng)度與砂礫擠得緊松有關(guān),擠得愈緊也就愈大。 手工造型機(jī) 手工造型機(jī)只是在工作中把起模工作機(jī)械化,實(shí)砂工作仍由手工來以做或用風(fēng)力砂子來撞。用手來實(shí)砂,十分繁重,而且費(fèi)時(shí)很多。砂型愈大,實(shí)砂時(shí)間所占的時(shí)間比也愈大。因此手工造型機(jī)只是用在實(shí)砂時(shí)間所占比例不大的型砂,其面積不大,高度約在300100厘米之間者為宜。擠壓造型機(jī) 擠壓造型機(jī)所用的實(shí)砂的方法就是直接用壓力壓在砂型上,使砂壓實(shí)。壓力造型機(jī)可分為上壓式與下壓式兩種。 圖1.1 上壓式與下壓式造型機(jī) 1-壓力工作臺(tái) 2-模型板 3-砂箱 4-頂填框 5-頂架 6-壓楦 7-固定機(jī)器工作臺(tái)上壓式造型機(jī)(見圖1.1a)的加壓方面,是正對(duì)砂型的分型面;砂箱和模型相對(duì)不動(dòng),由壓頭把砂壓實(shí)。下壓式造型機(jī)(見圖1.1b)的加壓方向是從模型方面來,模型與砂箱相對(duì)運(yùn)動(dòng)。上壓式造型機(jī)在調(diào)整砂箱大小的砂型時(shí),比較方便。下壓式造型機(jī)在調(diào)整砂型大小方面就比較繁瑣,要精確的調(diào)整砂箱的行程,因此下壓式造型機(jī)最好用在大量造型上。 震擊造型機(jī) 圖1.2示震擊實(shí)砂時(shí)的情形。其中1是震擊工作臺(tái),工作臺(tái)的下面就是震擊機(jī)構(gòu)。2、3、4分別是模型,砂箱的預(yù)填框。震擊時(shí),工作臺(tái)下面氣筒中的空氣將工作臺(tái)連同砂箱模型等頂起來,舉至一定的高度。就放出空氣讓工作臺(tái)自由地下落。工作臺(tái)與機(jī)體相碰撞時(shí),砂箱中的砂具有相當(dāng)大的動(dòng)能,驟然停止,產(chǎn)生很大的沖擊力。圖1.2 震擊實(shí)砂時(shí)的情形 每層砂都將力壓在下面一層砂上,于是砂就層層壓實(shí)了。震擊幾次以后,砂型就可以達(dá)到要求的緊實(shí)度。特殊造型機(jī) 特殊造型機(jī)其所用的實(shí)砂方法和擠壓造型機(jī),震擊造型機(jī)以及拋砂機(jī)所用的不同。在特殊造型機(jī)中有鑄鐵管的造型機(jī),它是用一種機(jī)械化的砂沖來實(shí)砂的,另有專造低砂箱(例如暖氣片)的造型機(jī),它是用壓碾子來實(shí)砂的。用機(jī)械化砂沖子的實(shí)砂原理和用手撞的相近似;而用壓碾子的實(shí)砂則和擠壓實(shí)砂差不多。第二,按照起模方式分類,造型機(jī)械可以分成下面幾類:1) 頂桿法,2) 漏模法,3) 翻板法和轉(zhuǎn)臺(tái)法。頂桿法 頂桿法起模的原理可如圖1.3所示。在砂箱的四角下有四根頂桿,砂型實(shí)砂以后,四根頂桿往上頂,將砂型連同砂箱向上頂出;模型板則固定在工作臺(tái)上不動(dòng),砂箱往上頂時(shí),就將模型起出。模型板上鉆有四個(gè)空讓頂桿能通過,四根頂桿裝在下面能移動(dòng)的一個(gè)整體上,位置剛好和砂箱的大小相適應(yīng)。四根頂桿的頂面要在同一個(gè)水平面上,這樣四根頂桿起模是,才能一體行動(dòng),砂箱不會(huì)傾斜。頂桿的移動(dòng)可利用簡(jiǎn)單的機(jī)構(gòu)來實(shí)現(xiàn)。例如用牙條,連桿,空氣氣筒等方法。 圖1.3 頂桿起模原理圖 1-砂箱 2-模型板 3-頂桿 4-機(jī)器的工作臺(tái)漏模法 漏模法的原理可如圖1.4所示。圖中的模型有三條很高的筋,筋與筋之間的距離也很小。如果這用頂桿法來起模時(shí),筋與筋之間的砂,圖中標(biāo)示X處,受到模型的摩擦力,或者稍碰到模型就十分容易損壞。為了避免這種現(xiàn)象,將模型做成兩部分,極短的一部分模型的本體做成呆的,固定在模型板上。三條筋則做成漏模式的。模型上割出三條筋的樣子的空。實(shí)砂完后,用簡(jiǎn)單的漏模機(jī)構(gòu)將連在一整體的三條筋往下拉出,然后在用手或者用頂桿法將砂箱起去。因?yàn)閳D中的X處在三條筋往下拉時(shí),下面模型板托住,就不會(huì)壞了。圖1.4漏模法 圖1.5用頂桿法來漏模1固定部分 2模型板 3漏模部分 1漏模板由于本設(shè)計(jì)不會(huì)涉及到翻板法和轉(zhuǎn)臺(tái)法,所以將不再詳細(xì)介紹該種起模方式的原理即詳細(xì)內(nèi)容。第三,按傳動(dòng)方式來分,造型機(jī)可以由一下幾種方式來傳動(dòng):1)手動(dòng) ; 2)壓縮空氣 ; 3)液壓傳動(dòng); 4)機(jī)械傳動(dòng), 5)電磁傳動(dòng)。手動(dòng) 手動(dòng)就是人工傳動(dòng)的意思,這種傳動(dòng)的效率是十分低的,現(xiàn)在的造型機(jī)已經(jīng)不再使用這種傳動(dòng)方式。壓縮空氣和水力傳動(dòng) 液壓傳動(dòng)所用的壓力,往往在50大氣壓力左右,而一般所用的壓縮空氣的壓力只在57大氣壓力。因此用液壓傳動(dòng)所用的機(jī)體可以比壓縮空氣傳動(dòng)小的多。此外液壓傳動(dòng)的作用也比較平穩(wěn)。這對(duì)起模工作是十分需要,若用空氣傳動(dòng)則作用很快。但盡管液壓傳動(dòng)有這些優(yōu)點(diǎn),在近代的造型饑中,液壓傳動(dòng)直接應(yīng)用的很少,相反地壓縮空氣傳動(dòng),則應(yīng)用得十分廣泛。其理由是: 1)壓箱空氣在現(xiàn)代镕造車間中是很重要的種動(dòng)力。它不僅用在造型機(jī)上而且也用在其它機(jī)械上,如落砂設(shè)備、噴砂機(jī)、各種的升降機(jī)等等。為了設(shè)備簡(jiǎn)單的起見,車間中往往只采用一種動(dòng)力用壓縮空氣而不用水泵。 2)現(xiàn)代鑄造車間中,用得最普遍和最底泛的震擊造型機(jī)是不能用液壓傳動(dòng)的。在震擊時(shí),工作臺(tái)下落的速度需要很快,這用壓縮空氣是可能的。但用液壓傳動(dòng)則不可能。液壓傳動(dòng)的運(yùn)動(dòng)很平穩(wěn)很慢、因而不能產(chǎn)生有效的震擊。 3)壓縮空氣機(jī)械,構(gòu)造比較簡(jiǎn)單,需要照管比較少,輸送時(shí)也只需一根管子。在液壓傳動(dòng)就需要兩級(jí)管子,而且壓力很高,水管系統(tǒng)的漏水等的可能性很大。 4)最后,再說液壓傳動(dòng)的平穩(wěn)性用壓縮空氣也可以設(shè)法利用。只要將空氣引到一空室中,先使壓縮空氣將壓力加在液體(油)上,然后再用管子將這些具有壓力的液體引到氣簡(jiǎn)種驅(qū)動(dòng),就可以比較平穩(wěn)的流動(dòng)。這種方法在新式的造型機(jī)中常用在起模機(jī)構(gòu)中。機(jī)械傳動(dòng) 所謂機(jī)械傳動(dòng)是指用電動(dòng)機(jī)帶動(dòng)或者是用傳動(dòng)系統(tǒng)來傳動(dòng)的。用機(jī)械傳動(dòng)的壓力造型機(jī)或者震擊造型機(jī)現(xiàn)用的不多。而且這種機(jī)械的設(shè)計(jì)也很少。因?yàn)橐话愕脑煨蜋C(jī)都是較慢的直線傳動(dòng),而電機(jī)都是很快的旋轉(zhuǎn)運(yùn)動(dòng)。電磁傳動(dòng) 擠壓造型機(jī)可用電磁傳動(dòng),其構(gòu)造是一線圈,中間是一鐵芯。通電流時(shí),線圈構(gòu)成一電磁鐵,吸住鐵芯往上移動(dòng),產(chǎn)生擠壓實(shí)砂。電磁造型機(jī)現(xiàn)尚用的不多,但它的構(gòu)造十分簡(jiǎn)單,所消耗的電能也十分經(jīng)濟(jì),將來應(yīng)用的前途是很大的。1.3震壓造型機(jī)簡(jiǎn)述1.3.1震壓造型機(jī)的組成震壓造型機(jī)的分類,以及各種分類的依據(jù)在上面已經(jīng)詳細(xì)介紹過了。現(xiàn)在主要介紹我所選擇作為設(shè)計(jì)的造型機(jī)-震壓造型機(jī)。震壓造型機(jī)在現(xiàn)階段的鑄造車間生產(chǎn)中應(yīng)用的十分廣泛。我所采用的是氣墊式微震壓實(shí)造型機(jī),該種造型機(jī)的適用范圍廣,效率高,可靠性也不錯(cuò),因此得到了廣泛的應(yīng)用?,F(xiàn)階段該種造型機(jī)的設(shè)計(jì)都是采用分塊式的設(shè)計(jì),一般的分塊設(shè)計(jì)如下:1)震壓機(jī)構(gòu)的設(shè)計(jì),2)壓頭的設(shè)計(jì),3)總體布局的設(shè)計(jì),三大部分。震壓機(jī)構(gòu)的設(shè)計(jì)是造型機(jī)設(shè)計(jì)的主體部分。震壓機(jī)構(gòu)的設(shè)計(jì)包括1)震擊活塞的設(shè)計(jì),2)壓實(shí)活塞的設(shè)計(jì)兩部分。其中工作臺(tái)的設(shè)計(jì)也是在震壓機(jī)構(gòu)的設(shè)計(jì)來選擇設(shè)計(jì)的,在工作臺(tái)的設(shè)計(jì)中還需要考慮起模設(shè)施的設(shè)計(jì)。壓頭的設(shè)計(jì),相對(duì)震壓機(jī)構(gòu)來說比較簡(jiǎn)單,只需要保證壓頭的大小能夠和工作臺(tái)中砂箱的大小相一致,能夠在齒輪和齒條的配合中完成壓頭轉(zhuǎn)換的角度,最后能夠在校核中滿足要求就可以了??傮w布局設(shè)計(jì),在震壓機(jī)構(gòu),回轉(zhuǎn)壓頭,底座,立柱和氣路系統(tǒng)中的配合,保證不沖突、滿足震擊要求,以及壓實(shí)位移能夠滿足砂型的強(qiáng)度要求。最終的設(shè)計(jì)就是氣路系統(tǒng)的設(shè)計(jì),在總體布局中,氣路的設(shè)計(jì)只是一小部分,只需要在立柱中開出能夠輸送壓縮空氣的簡(jiǎn)單氣路就可以了。1.3.2震壓造型機(jī)的工作原理在此所說的震壓造型機(jī)的工作原理只是震壓機(jī)構(gòu)的工作原理。震擊機(jī)構(gòu)按司氣方式不同可分為活塞司氣式和閥門司氣式?;钊練馐秸饟魴C(jī)構(gòu)是利用震擊活塞直接開閉進(jìn)、排氣孔,以實(shí)現(xiàn)震擊的。而閥門司氣式則是利用閥門的工位控制進(jìn)氣和排氣的。我們主要討論的是活塞司氣式。震擊時(shí),震擊活塞線上升,然后下降與機(jī)座相碰撞,完成一個(gè)工作循環(huán)。此后反復(fù)進(jìn)行同樣的循環(huán)。與此同時(shí),汽缸內(nèi)的氣體則經(jīng)過進(jìn)氣、膨脹、排氣、壓縮到再度進(jìn)氣,完成一個(gè)循環(huán)。這個(gè)循環(huán)中,汽缸內(nèi)的氣體壓力是不斷變化的??梢岳檬竟D的方法來分析研究汽缸內(nèi)氣體變化和活塞形成變化的相互關(guān)系,這對(duì)分析認(rèn)識(shí)氣動(dòng)震擊機(jī)構(gòu)的工作原理及其規(guī)律性是很有意義的?,F(xiàn)以不斷進(jìn)氣震擊機(jī)構(gòu)為例,介紹示功圖的分析方法。圖1.6表示不斷進(jìn)氣震擊機(jī)構(gòu)的示功圖。橫坐標(biāo)表示汽缸內(nèi)的工作壓力,縱坐標(biāo)表示活塞形成。圖1.6 不斷進(jìn)氣震擊機(jī)構(gòu)示功圖1. 進(jìn)氣階段。震擊汽缸進(jìn)氣時(shí),壓縮空氣首先充滿余隙空間 ,然后氣壓逐漸升高,到氣體對(duì)于震擊活塞總壓力等于活塞升起部分總重與活塞所受摩擦阻力之和時(shí),活塞將向上運(yùn)動(dòng)。其運(yùn)動(dòng)平衡條件為: 式中: 在點(diǎn)1處汽缸內(nèi)的氣體壓力,絕對(duì)氣壓(公斤/ );F活塞面積();Q升起部分總重,包括:有效負(fù)荷(即砂箱、模板、余砂框和型砂等的重量)以及機(jī)器升起部分自重 (即工作臺(tái)、活塞的重量)(公斤);R活塞與缸壁間的摩擦阻力(公斤)。由此可得,舉升活塞所必須的最小氣壓: (表壓力/ )如圖2-1,1點(diǎn)的縱坐標(biāo)為 ,常稱為余隙高度,即余隙空間的折算高度 (厘米)隨著壓縮空氣不斷進(jìn)入氣缸,氣壓不斷升高,活塞不斷向上運(yùn)動(dòng)。由于其運(yùn)動(dòng)速度開始較慢,以后逐漸增大,因而缸內(nèi)氣壓起初上升較快,后來較慢。所以線段1-2大致承拋物線關(guān)系變化。一般在正常情況下, 為0.51個(gè)大氣壓(公斤/ )。 如果在12段壓力不是連續(xù)上升,而是出現(xiàn)先上升后又下降的跳動(dòng)現(xiàn)象時(shí),則反映進(jìn)氣孔斷面小了,供氣不足。這種情況會(huì)導(dǎo)致工作臺(tái)升起高度減小,削弱緊實(shí)效果。2. 排氣階段。如圖2-1,活塞上升到點(diǎn)2時(shí),排氣孔打開,排氣。這時(shí),雖然氣孔還在進(jìn)氣,但由于排氣孔面積比進(jìn)氣孔大35倍,所以氣缸內(nèi)的壓力迅速降低。然而活塞并不立即下降,它由于運(yùn)動(dòng)的慣性還繼續(xù)上升一段距離,直到其上升速度為零時(shí)才開始下降。這段行程稱為慣性行程 。一般 (0.60.7)?;钊邳c(diǎn)3開始下降。此時(shí),作用力為Q,而向上的的阻力時(shí)活塞下方所受的空氣壓力及活塞與缸壁之間的摩擦阻力R。由此, 于是,點(diǎn)3的壓力為: (表壓力,公斤/ )如果排氣孔面積足夠大時(shí),點(diǎn)3的壓力為0.40.6表壓力。活塞由于自重下落,到排氣孔關(guān)閉為一個(gè)階段。缸內(nèi)壓力繼續(xù)下降,至點(diǎn)4時(shí)達(dá)到最低值。在不斷進(jìn)氣震擊機(jī)構(gòu)中,點(diǎn)4的壓力一般為0.20.5表壓力。如果排氣孔面積國(guó)小,也會(huì)出現(xiàn)壓力跳動(dòng)現(xiàn)象,即先下降后又升高。這必然影響活塞下降速度,減弱撞擊力,從而影響緊實(shí)效果。3. 壓縮階段。圖2-1中,在點(diǎn)4時(shí),排氣孔完全關(guān)閉。雖然進(jìn)氣孔在進(jìn)氣,活塞由于運(yùn)動(dòng)慣性較大,仍繼續(xù)下降。因此使氣缸內(nèi)的空氣被壓縮。故4-1段為壓縮行程。這段對(duì)活塞有緩沖作用,但減弱撞擊力。所以,排氣孔開設(shè)的位置很重要。在正常情況下,示功圖在點(diǎn)1處時(shí)閉合的。1.3.3 震擊機(jī)構(gòu)的各參數(shù)的影響要素在對(duì)震擊機(jī)構(gòu)示功圖分析的基礎(chǔ)上,便不難討論出一些主要因素如司氣要素、管道壓力和負(fù)荷對(duì)它的影響。增大進(jìn)氣行程 時(shí),慣性行程 也會(huì)有所增大,從而震擊高度S增大;另一方面, 增大勢(shì)必使排氣壓力趨向更低,因而使撞擊能增加。減小 ,則效果相反。一般 (0.120.2)S。增大余隙高度 ,則空氣消耗量增加。所以設(shè)計(jì)時(shí)應(yīng)使 小一些。但過小,將使下降行程中的4-1段氣壓增加過多,因而減小,而增大。其結(jié)果時(shí)撞擊能減小。實(shí)際上,對(duì)于活塞司氣式的震擊機(jī)構(gòu),取余隙高度為(0.71.0)S。對(duì)于各種震擊造型機(jī)S為2580毫米,一般隨砂箱大小不同而有所不同。管道壓力的影響很明顯。壓力降低時(shí),圖上2點(diǎn)的壓力下降,面積變小,進(jìn)氣能量小,震擊高度和震擊能量都會(huì)降低,甚至無法震擊,所以管道壓力過低時(shí)機(jī)器不能正常工作。一般講,震擊負(fù)荷、摩擦阻力對(duì)示功圖的影響是:當(dāng)增大時(shí),面積減小,如同減小管道壓力一樣,使震擊高度和震擊能都降低。減小時(shí),結(jié)果相反。震擊活塞舉升的全部負(fù)荷Q是由工作臺(tái)和活塞等的自重和包括模板、砂箱及型砂的重量在內(nèi)的有效負(fù)荷所組成。如果增大有效負(fù)荷,哪么機(jī)器在單位時(shí)間內(nèi)的震擊次數(shù)和震擊高度都會(huì)改變。此時(shí)震擊高度將會(huì)逐漸減小,到某一極限負(fù)荷時(shí)接近于零,即臺(tái)面幾乎停止升起。1.3.4氣墊式與彈簧式震壓造型機(jī)的比較按支撐結(jié)構(gòu)不同,氣動(dòng)微震機(jī)構(gòu)可以分為彈簧微震機(jī)構(gòu)和氣墊微震機(jī)構(gòu),彈下表給出了二者性能的對(duì)比(表1-1)。表1-1 兩種微震機(jī)構(gòu)性能對(duì)比技術(shù)性能彈簧微震機(jī)構(gòu)氣墊微震機(jī)構(gòu)剛度調(diào)節(jié)需更換彈簧調(diào)節(jié)氣墊壓力預(yù)壓力調(diào)節(jié)范圍調(diào)節(jié)范圍小調(diào)節(jié)范圍大震擊力變化幅度基本不變可在較大范圍內(nèi)變化震擊強(qiáng)度較強(qiáng)較弱震擊頻率較低較高對(duì)起模的影響起模時(shí)有浮動(dòng)起模時(shí)無浮動(dòng)維修工作比較容易密封件易損壞制造加工大彈簧制造困難對(duì)同心度要求較高對(duì)于氣動(dòng)微震機(jī)構(gòu)震擊效果的判別,廣泛使用示功圖分析法,即繪制微震機(jī)構(gòu)一次震擊循環(huán)的示功圖,然后求出單位活塞面積的撞擊比能e和撞擊效果 ,其中e為單位活塞面積的反跳比能,T為一次震擊循環(huán)時(shí)間。 圖1.7是兩種氣動(dòng)微震機(jī)構(gòu)示功圖:圖1.7(a)彈簧微震機(jī)構(gòu)圖1.7(b)氣墊微震機(jī)構(gòu)圖中各符號(hào)含義如圖下:進(jìn)氣行程;膨脹行程;排氣行或慣性行程;S 總行程。 氣墊式微震機(jī)構(gòu)與彈簧式微震機(jī)構(gòu)示功圖各自特點(diǎn):1. 阻力線的形狀不同 砧坐式震擊機(jī)構(gòu)示功圖上的阻力線時(shí)一條直線;氣墊式微震機(jī)構(gòu)的阻力線是一條撞擊能耗小的指數(shù)曲線;彈簧式微震機(jī)構(gòu)則是一向下傾斜的斜直線。2. 排氣(慣性)行程的長(zhǎng)度不同 砧坐式震擊機(jī)構(gòu)的排氣行程較長(zhǎng)。氣動(dòng)威震機(jī)構(gòu)因震鐵的運(yùn)動(dòng)受到一個(gè)隨行程增加而逐漸增大的彈簧反力或者氣墊反力的作用,排氣行程明顯縮短。也就是說,微震機(jī)構(gòu)具有較高的震擊頻率。3. 阻力線的位置 砧坐式震擊機(jī)構(gòu)阻力線位置是固定不變的,僅與舉升部分重量和摩擦阻力有關(guān)。微震機(jī)構(gòu)阻力線的位置可在一定范圍內(nèi)變動(dòng),其起點(diǎn)的壓力值不僅與舉升部分重量和摩擦阻力有關(guān),而且與間隙,彈簧剛度K,氣墊缸初始?jí)毫兔娣eA有關(guān)。4. 不論是砧坐式示功圖,還是微震機(jī)構(gòu)示功圖,各部分面積都滿足下列關(guān)系: 兩種微震機(jī)構(gòu)的震擊原理是類似,不同在于緩沖結(jié)構(gòu)上。因此只需從實(shí)用性角度加以對(duì)比選擇。彈簧機(jī)構(gòu)的設(shè)計(jì)都在于彈簧的設(shè)計(jì)與校核,而氣墊式震壓機(jī)構(gòu)的設(shè)計(jì)在于氣墊與震擊活塞和壓實(shí)活塞的配合上,以及對(duì)氣墊的材料設(shè)計(jì)。在這樣看來兩種的設(shè)計(jì)都是在震擊、壓實(shí)的機(jī)構(gòu)設(shè)計(jì)的基礎(chǔ)上,氣墊式震壓造型機(jī)多了對(duì)于氣墊的設(shè)計(jì)。氣墊的設(shè)計(jì)主要用于震擊時(shí)能夠有足夠強(qiáng)的舉升力量,以及能夠起到緩沖的作用,也消除了在壓實(shí)的時(shí)候存在的震擊余力,能夠有有效的去除在震擊時(shí)的噪音。因此,本設(shè)計(jì)取氣墊式微震壓實(shí)機(jī)來設(shè)計(jì)。2 震壓造型機(jī)2.1 設(shè)計(jì)目的鑄造機(jī)械(造型機(jī))的設(shè)計(jì)是以砂型鑄造為對(duì)象,根據(jù)機(jī)器的工作原理和鑄造機(jī)械的基本理論,進(jìn)行運(yùn)動(dòng)和動(dòng)力分析,和工作參數(shù)的制定,以及制作出相關(guān)圖紙。這要求我們掌握廣泛而堅(jiān)實(shí)的理論基礎(chǔ)知識(shí),培養(yǎng)鮮明的工程觀點(diǎn)和富于進(jìn)取的創(chuàng)新精神,積累生產(chǎn)和設(shè)計(jì)經(jīng)驗(yàn),提高分析問題和解決問題的能力。通過造型機(jī)的設(shè)計(jì),可以使我們:1. 掌握從生產(chǎn)實(shí)際和工藝要求出發(fā),制定設(shè)計(jì)方案、選擇工作參數(shù)、進(jìn)行分析和計(jì)算的一般設(shè)計(jì)方法。2. 學(xué)會(huì)運(yùn)用已知的理論知識(shí),研究和解決鑄造機(jī)械中的有關(guān)問題。3. 了解鑄造機(jī)械設(shè)計(jì)特點(diǎn)和發(fā)展動(dòng)態(tài),未進(jìn)行有關(guān)鑄造機(jī)械的開發(fā)性研究和試驗(yàn)工作,打下一定的基礎(chǔ)。從我做畢業(yè)設(shè)計(jì)的角度來說,震壓式造型已經(jīng)是一門比較成熟的造型工藝,甚至現(xiàn)在都以不多見,通過對(duì)它的設(shè)計(jì),既是對(duì)過去四年所學(xué)的鞏固,需要綜合應(yīng)用到許多知識(shí),也是對(duì)即將從事的設(shè)計(jì)工作的一個(gè)很好的演練。設(shè)計(jì)要達(dá)到的技術(shù)要求:1. 使用性要求。設(shè)計(jì)的機(jī)器要求根據(jù)要求和制定的工作參數(shù),完成一定的運(yùn)動(dòng),承受一定的載荷,達(dá)到一定的工作目的。在實(shí)習(xí)用震壓造型機(jī)的設(shè)計(jì)中,工序的銜接不做過多要求。2. 可靠性要求。在預(yù)計(jì)的使用期限內(nèi)機(jī)器不應(yīng)破壞,不會(huì)因個(gè)別零件的損壞(可以及時(shí)更新)而影響整個(gè)機(jī)器的正常運(yùn)轉(zhuǎn),也不會(huì)因振動(dòng)而影響工作質(zhì)量。這就要求機(jī)器的總體設(shè)計(jì)合理,設(shè)計(jì)的零件要有足夠的強(qiáng)度、剛度和穩(wěn)定性;對(duì)于易磨損的零件易于及時(shí)更換。2.2 國(guó)內(nèi)外發(fā)展從二十世紀(jì)二十年代到五十年代左右,氣動(dòng)震壓是造型機(jī)一直是鑄造車間中最主要的造型設(shè)備,之后又出現(xiàn)了多觸頭高壓造型機(jī)、射壓造型機(jī)等現(xiàn)代化自動(dòng)造型設(shè)備,特別是傳統(tǒng)的砧座式震壓機(jī)構(gòu)被氣動(dòng)微震機(jī)構(gòu)所取代,產(chǎn)生新型的氣動(dòng)微震壓實(shí)造型機(jī),原有的震壓式造型機(jī)就處于被淘汰的地位。氣動(dòng)微震壓實(shí)造型機(jī)的主要特點(diǎn)是壓實(shí)的同時(shí)進(jìn)行震擊,因此可得到緊實(shí)度分布良好的砂型。另外氣動(dòng)微震壓實(shí)造型機(jī)生產(chǎn)率高,振動(dòng)較小,對(duì)基礎(chǔ)要求低,噪音小等特點(diǎn)。從目前來看,國(guó)內(nèi)外早己用氣動(dòng)微震壓實(shí)造型機(jī)逐步代替震擊式和震壓式造型機(jī)。此間,國(guó)外鑄造設(shè)備在機(jī)械設(shè)計(jì)、材料選用、制造精度以及控制系統(tǒng)方面與過去相比都有顯著提高。由于吸取了組合機(jī)床設(shè)計(jì)的經(jīng)驗(yàn),使各類鑄造設(shè)備在產(chǎn)品系列化、零部件通用化方面有了新的進(jìn)展。這對(duì)于設(shè)計(jì)、制造和使用、維修都帶來了很大的方便。比如,一條造型自動(dòng)線可以按照使用工廠的具體要求,基本上由通用的部件組合為主、輔機(jī)并配成生產(chǎn)線。在控制系統(tǒng)中,普遍采用電氣或電子控制,現(xiàn)在大部分都已采用電子計(jì)算機(jī)控制。我國(guó)的鑄造機(jī)械水平總的來說還不高,與工業(yè)發(fā)達(dá)國(guó)家相比有明顯的差距,主要表現(xiàn)在:1.品種少。2.專業(yè)廠制造水平低。3.設(shè)備結(jié)構(gòu)落后,效率低,能耗高,可靠性差。4.計(jì)算機(jī)的應(yīng)用。2.3 設(shè)計(jì)指導(dǎo)思想氣動(dòng)微震造型機(jī)的主要工作部分可分為震壓機(jī)構(gòu)和壓頭機(jī)構(gòu)。各種震壓機(jī)的壓頭機(jī)構(gòu)大同小異,而震壓機(jī)構(gòu)則千差萬別。壓頭的機(jī)構(gòu)的設(shè)計(jì)可在彈簧式氣動(dòng)微震造型機(jī)的基礎(chǔ)上模仿和改進(jìn)。震壓機(jī)構(gòu)則要通過性能分析進(jìn)行參數(shù)設(shè)計(jì)。震擊機(jī)構(gòu)就其本質(zhì)來說,是一個(gè)將壓縮空氣能轉(zhuǎn)化為機(jī)械能的換能機(jī)構(gòu),因此,對(duì)震擊機(jī)構(gòu)性能的研究及其合理設(shè)計(jì)就不能脫離開表征震擊機(jī)構(gòu)換能過程的示功圖的討論。因此整個(gè)機(jī)構(gòu)的設(shè)計(jì)可以大致分為幾個(gè)個(gè)部分:1. 分析震擊機(jī)構(gòu)工作原理與示功圖表示法。2. 設(shè)計(jì)和演算氣動(dòng)微震機(jī)構(gòu)造型機(jī)震擊機(jī)構(gòu)的計(jì)算公式。提出氣動(dòng)微震機(jī)構(gòu)設(shè)計(jì)的基本參數(shù)及值,規(guī)定了近似的示功圖并按此示功圖分析導(dǎo)出了各項(xiàng)參數(shù)的計(jì)算式。3. 根據(jù)要求制定設(shè)計(jì)方案,選擇工作參數(shù),進(jìn)行分析和計(jì)算4. 機(jī)構(gòu)的各種改進(jìn)措施和環(huán)保措施。5. 繪出主要部件的裝配圖。2.4 氣動(dòng)微震造型機(jī)計(jì)算公式2.4.1 震擊機(jī)構(gòu)設(shè)計(jì)的的基本參數(shù)式氣動(dòng)微震造型機(jī)的震擊機(jī)構(gòu)是一個(gè)將壓縮空氣能轉(zhuǎn)換為機(jī)械沖擊能的換能機(jī)構(gòu)。一臺(tái)造型機(jī)的震擊機(jī)構(gòu)的緊實(shí)砂的效能,取決于下面兩個(gè)方面因素(這兩個(gè)方面因素的數(shù)值的最佳取值也就規(guī)定了震擊機(jī)構(gòu)設(shè)計(jì)的基本參數(shù)及),它們分別是:震擊機(jī)構(gòu)的換能效率高效率的震擊機(jī)構(gòu)應(yīng)該是在單位時(shí)間力能夠提供最多的機(jī)械沖擊能的機(jī)構(gòu)。為實(shí)現(xiàn)這一極值條件的基本參數(shù),其取值為: 式中:F震擊缸活塞面積(); 震擊缸內(nèi)最大工作氣壓(以絕對(duì)氣壓表示)值(); 壓震狀態(tài)時(shí),震鐵位置在撞擊點(diǎn)上,震擊彈簧(或氣墊腔壓力)對(duì)震鐵的靜支托力(即扣除了震鐵重量后的彈簧反力)(kg)。2. 能有效的緊實(shí)型砂的機(jī)械沖擊強(qiáng)度震擊機(jī)構(gòu)時(shí)依靠震擊活塞的機(jī)械碰撞來緊實(shí)型砂或抖動(dòng)型砂的,故為了達(dá)到預(yù)期的緊實(shí)或抖動(dòng)要求,震擊機(jī)構(gòu)應(yīng)有適當(dāng)?shù)呐鰮魪?qiáng)度,根據(jù)碰撞原理,可引用基本參數(shù)如下: 式中:F震擊缸活塞面積(); 震擊活塞所承受的全部負(fù)重(kg); 震鐵的重量(kg); A單位震擊活塞面積在每一工作循環(huán)中所能提供的機(jī)械沖擊能(kg-cm/),一般應(yīng)由實(shí)測(cè)的示功圖中分析求得。參照有良好震擊效能的震擊機(jī)構(gòu)示功圖規(guī)律,?。ò床恍纬蓢?yán)重氣墊的要求);(按的取值求出);(式中R系缸的摩擦阻力)。按近似理想的示功圖圖形計(jì)算,可以得到以下分析式; (2-3) ; (2-4) (2-5)當(dāng),則 (2-6)式中:進(jìn)氣行程(cm); 膨脹行程(cm); 慣性行程(cm); S=+總行程(cm); 震擊缸內(nèi)最大工作氣壓(絕對(duì)氣壓)(kg/); 震擊缸內(nèi)最小工作氣壓(絕對(duì)氣壓)(kg/); e =(0.30.4)震鐵撞擊的反跳系數(shù)(一般在設(shè)計(jì)時(shí)可取,即e=0.316);C震鐵彈簧的彈簧剛度(或氣墊的相對(duì)剛度)(kg/cm)。另外根據(jù)能量守恒原理,震鐵的撞擊速度為= (2-7)2.4.2關(guān)于司氣參數(shù)的取值式司氣參數(shù)的經(jīng)驗(yàn)取值式有: (2-8); ( 2-9 ) ; (2-10) ;根據(jù)能夠獲得近似的理想示功圖的要求還可以列出計(jì)算司氣參數(shù)的補(bǔ)充式子,這里不一一列出,只是給出其中的經(jīng)驗(yàn)結(jié)論: (2-11) (2-12) (2-13) (2-14)式中:為兩下標(biāo)平均速度之比; 為震擊缸進(jìn)氣口面積(); 為震擊缸排氣口面積();以上(2-8)、(2-9)、(2-10)、(2-11)、(2-12)、(2-13)、(2-14)就是獲得有有近似理想示功圖的震擊機(jī)構(gòu)的全部司氣參數(shù)、及、的計(jì)算公式。2.4.3 壓震頻率n的計(jì)算式設(shè):震鐵全行程運(yùn)動(dòng)的平均速度;T震鐵的運(yùn)動(dòng)周期(秒);n壓震頻率(次/分);所以: (2-15)2.4.4 經(jīng)驗(yàn)公式有效負(fù)重和舉升重量 有效負(fù)荷為震擊機(jī)構(gòu)所需要舉升的重量,其中包括:砂箱 模板 型砂 輔助框(包括輔助框上的復(fù)位彈簧的恢復(fù)力)等的全部重量,即:有效負(fù)重=+ (2-16)舉升重量:主要指工作臺(tái),活塞,導(dǎo)桿等有關(guān)部件的重量之和。可按經(jīng)驗(yàn)公式估算 (2-17).摩擦阻力 摩擦阻力R的大小一般與機(jī)器的結(jié)構(gòu),加工精度,安裝精度以及潤(rùn)滑等因素有關(guān),有經(jīng)驗(yàn)公式 R=0.05(+ (2-18)震擊缸尺寸 根據(jù)震擊活塞受力平衡可得:=(+R)=(0.270.46)( +) (厘米) (2-19)K為裕量系數(shù),取值一般在1.12.5取=5kg/考慮到影響摩擦阻力,儲(chǔ)備系數(shù)的因素很多, 也可按震擊缸氣壓沒行計(jì)算,有如下經(jīng)驗(yàn)公式: 取2.53 kg/, 小造型機(jī)取較大值,大造型機(jī)取較小值.這里取=2.857 kg/=0.35 (+) =.震擊活塞長(zhǎng)度() 活塞長(zhǎng)度主要從導(dǎo)向的角度來考慮,應(yīng)使工作平穩(wěn)而不至卡死,一般根據(jù)經(jīng)驗(yàn)公式 =(1.62.0) 震鐵重量 震鐵重量是震強(qiáng)度的重要影響因素。達(dá)到同樣的緊實(shí)效果重震擊比輕震擊所需時(shí)間要短得多,或者說同樣的震擊時(shí)間重震要比輕震擊緊實(shí)效果好得多震鐵的重量按下式計(jì)算: =k(+)k為震擊強(qiáng)度系數(shù),重震擊:k0.51,適于高壓造型機(jī)或大型造型機(jī)中震擊:k=0.20.5,一般用于中大型,或以壓實(shí)為主的高壓造型機(jī)輕震擊:k0.10.2,用于中小型造型機(jī),或高壓造型機(jī)中最輕震擊: k0.1,用于小型造型機(jī)和小型微震造型機(jī)造型機(jī)比壓大的取較小值,比壓小的取較大值.在一般情況下,震鐵越重,震擊時(shí)給予工作臺(tái)的撞擊能就越大,所以要求震鐵的重量不低于一個(gè)極限值,否則會(huì)出現(xiàn)緊實(shí)度不足或震擊效率太低的現(xiàn)象。近年來有取用更大的趨勢(shì)。這里取k=0.2,所以=0.2 (+)司氣參數(shù) 包括進(jìn)氣行程,膨脹行程,慣性行程,以及余隙高度。這些參數(shù)選取得當(dāng)否,不僅影響造型的振幅,頻率,壓縮空氣消耗量等重要的工藝參數(shù),而且直接關(guān)系到造型機(jī)能否正常工作。在目前普遍使用的氣動(dòng)微震壓實(shí)造型機(jī)中,震擊活塞的全行程S一般在之間,根據(jù)資料推薦和模擬測(cè)試表明,在這個(gè)范圍內(nèi)的全行程對(duì)于型砂的流動(dòng)性、壓實(shí)后的緊實(shí)度均勻性都比較好,故我們根據(jù)一般資料推薦=6毫米; ;則全程。3 氣墊式微震壓實(shí)造型機(jī)3.1 簡(jiǎn)述氣墊式微震壓實(shí)造型機(jī)是當(dāng)代車間造型線生產(chǎn)的主要使用的生產(chǎn)機(jī)器,它是由底座、立柱、回轉(zhuǎn)壓頭、震壓機(jī)構(gòu)和管路系統(tǒng)組合而成的。每個(gè)造型機(jī)內(nèi)部設(shè)有氣泵,小型油閥(回轉(zhuǎn)壓頭專用且有硬管系統(tǒng)防止漏油現(xiàn)象)等。本設(shè)計(jì)主要是震壓機(jī)構(gòu)的設(shè)計(jì)及回轉(zhuǎn)壓頭的齒輪軸與齒條軸的設(shè)計(jì)。3.2 設(shè)計(jì)的主體方案QWYJ 80 3003.2.1 型號(hào)的組成及其代表的含義壓實(shí)缸的尺寸震擊缸的尺寸其QWYJ取自“氣”,“微”,“壓”,“機(jī)”幾個(gè)漢字的拼音的首字母3.2.2 使用環(huán)境1. 周圍溫度為室溫,濕度不大于一定程度;2. 周圍介質(zhì)中腐蝕的介質(zhì)不能太多。3. 正常環(huán)境都可以使用。3.2.3 設(shè)計(jì)總則1、面向生產(chǎn),力求實(shí)效,以滿足用戶最大實(shí)際需求。2、貫徹執(zhí)行國(guó)家、部、專業(yè)的標(biāo)準(zhǔn)及有關(guān)規(guī)定。3、技術(shù)比較先進(jìn),在一般設(shè)計(jì)中進(jìn)行改進(jìn),要求性能和壽命能有顯著的提高。3.2.4 已知條件1.造型機(jī)所需要適應(yīng)的模型框是 ;2.造型砂的密度為 ,本機(jī)取1;3.碳鋼的密度為 ,本機(jī)取7.8。3.2.5 震壓方案的確定經(jīng)過我們反復(fù)驗(yàn)證及討論,可以做出下面的震壓機(jī)構(gòu)簡(jiǎn)圖:圖3.1 震壓機(jī)構(gòu)簡(jiǎn)圖簡(jiǎn)介如下:震壓機(jī)構(gòu)最里面的作為震鐵,次之是震擊活塞,最外面的是壓實(shí)缸,剩下的那個(gè)做為過渡活塞(作用是連接震擊缸與壓實(shí)缸),最下面的是接砂缸(其作用以后會(huì)介紹)。在設(shè)計(jì)過程中,主要是設(shè)計(jì)震擊缸的尺寸、震擊進(jìn)氣孔的大小、壓實(shí)缸的尺寸、壓實(shí)進(jìn)氣孔的大小、接砂缸的大小、氣墊的尺寸。創(chuàng)新點(diǎn):氣墊的設(shè)計(jì)新穎,壽命更長(zhǎng)久,噪音更小,更能使得砂型的緊實(shí)度滿足要求。主要目的:1) 完成震擊,壓實(shí)和起模三個(gè)規(guī)定動(dòng)作;2) 保證緊實(shí)度,模型砂的完整;3) 該造型機(jī)主要用于教學(xué)演示,盡量自動(dòng)化,減少手工操作難度,便于操作。3.2.6 震擊機(jī)構(gòu)的參數(shù)選擇漸開線直齒的設(shè)計(jì)與校核參考機(jī)械工程學(xué)I(王洪欣等著,中國(guó)礦業(yè)大學(xué)出版社出版);現(xiàn)代機(jī)械傳動(dòng)手冊(cè)(現(xiàn)代機(jī)械傳動(dòng)手冊(cè)編輯委員會(huì) 編)校核過程中的系數(shù)均從上兩個(gè)本書中查取。Z1與Z2嚙合參數(shù)及強(qiáng)度計(jì)算設(shè)計(jì)項(xiàng)目及說明結(jié)果1)有效負(fù)重和舉升重量有效負(fù)荷為震擊機(jī)構(gòu)所需要舉升的重量,其中包括:砂箱 模板 型砂 輔助框(包括輔助框上的復(fù)位彈簧的恢復(fù)力)等的全部重量,即:有效負(fù)重=+砂箱厚度取20mm可鑄鋁合金密度為2.7g/砂箱密度為7.87.85g/,這里取7.8g/造型砂密度為0.81.3 g/,這里取1 g/緊實(shí)率為35左右,得出余砂箱高度h80.77mm,取整h80mm此時(shí)的緊實(shí)率10034.78計(jì)算得 32.76kg 17.47kg 28.175kg=+ =32.76+17.47+28.175=78.405kg舉升重量:主要指工作臺(tái),活塞,導(dǎo)桿等有關(guān)部件的重量之和??砂唇?jīng)驗(yàn)公式估算式中:為自重系數(shù),參照表1如下表3.1 自重系數(shù)選用表(kg)25000.80.70.60.50.4這里取為0.75,得=0.7580kg=60kg2)摩擦阻力摩擦阻力R的大小一般與機(jī)器的結(jié)構(gòu),加工精度,安裝精度以及潤(rùn)滑等因素有關(guān),有經(jīng)驗(yàn)公式 R=0.05(+)=0.05(80+60)kg=7kg3).震擊結(jié)構(gòu)的設(shè)計(jì)計(jì)算 1.震擊缸尺寸根據(jù)震擊活塞受力平衡可得:=(+R)=(0.270.46)( +) (厘米)K為裕量系數(shù),取值一般在1.12.5取=5kg/考慮到影響摩擦阻力,儲(chǔ)備系數(shù)的因素很多, 也可按震擊缸氣壓沒行計(jì)算,有如下經(jīng)驗(yàn)公式:取2.53 kg/, 小造型機(jī)取較大值,大造型機(jī)取較小值.這里取=2.857 kg/=0.35(+) =得=80mm, =5026.5482.震擊活塞長(zhǎng)度()活塞長(zhǎng)度主要從導(dǎo)向的角度來考慮,應(yīng)使工作平穩(wěn)而不至卡死,一般根據(jù)經(jīng)驗(yàn)公式 =(1.62.0) =1.880mm=144mm3.震鐵重量 震鐵重量是震強(qiáng)度的重要影響因素。達(dá)到同樣的緊實(shí)效果重震擊比輕震擊所需時(shí)間要短得多,或者說同樣的震擊時(shí)間重震要比輕震擊緊實(shí)效果好得多震鐵的重量按下式計(jì)算: =k(+)k為震擊強(qiáng)度系數(shù),重震擊:k0.51,適于高壓造型機(jī)或大型造型機(jī)中震擊:k=0.20.5,一般用于中大型,或以壓實(shí)為主的高壓造型機(jī)輕震擊:k0.10.2,用于中小型造型機(jī),或高壓造型機(jī)中最輕震擊: k0.1,用于小型造型機(jī)和小型微震造型機(jī)造型機(jī)比壓大的取較小值,比壓小的取較大值.在一般情況下,震鐵越重,震擊時(shí)給予工作臺(tái)的撞擊能就越大,所以要求震鐵的重量不低于一個(gè)極限值,否則會(huì)出現(xiàn)緊實(shí)度不足或震擊效率太低的現(xiàn)象。近年來有取用更大的趨勢(shì)。這里取k=0.2,所以=0.2(+)=28 kg4.司氣要素一般所指的司氣要素包括:進(jìn)氣行程,膨脹行程,慣性行程,余隙高度。它們直接影響緊實(shí)效果以及壓縮空氣的消耗量。震擊活塞的全行程S一般在1525mm之間,根據(jù)資料推薦和模擬測(cè)試表明,在這個(gè)范圍內(nèi)的全行程對(duì)于型砂的流動(dòng)性、壓實(shí)后砂型的緊實(shí)的均勻性都比較好,故我們根據(jù)一般資料推薦=6mm,=10mm; ,=4mm。則全程=20mm5.氣墊柱塞尺寸的計(jì)算氣墊柱塞直徑的計(jì)算,根據(jù)我們得出的經(jīng)驗(yàn)數(shù)據(jù)和一些資料推薦的公式,一般?。?.60.8),較適宜。式中:氣墊柱塞的截面積;震擊腔的截面積;則(0.60.8)(0.7750.895)=6271.6mm氣墊柱塞腔的高度的計(jì)算,根據(jù)資料推薦:式中:y壓縮比,一般取y=1.11.5,則:=16048mm6)名義震擊力的計(jì)算所謂名義震擊力即在最大震擊行程時(shí)氣墊對(duì)震擊活塞的反力,由于在壓震時(shí),工作臺(tái)不動(dòng),僅震擊活塞本身在氣墊的作用下向上撞擊產(chǎn)生微震,因此可列下式:式中:氣墊壓力(當(dāng)震擊活塞下行20mm時(shí),氣墊腔內(nèi)的壓力),這里取=4.5kg/;u阻力系數(shù)(包括摩擦系數(shù)在內(nèi)),一般取0.060.16,這里取u=0.1;震擊活塞的重量,一般取,這里取=30kg帶入上式得:=50kg7)進(jìn)排氣孔的確定a) 進(jìn)氣孔的面積關(guān)于進(jìn)氣孔面積的計(jì)算,大多數(shù)資料是比較一致的,我們經(jīng)試驗(yàn)表明,進(jìn)氣孔面積一般?。?.020.05);故本機(jī)(0.020.05)=1。283.2本機(jī)選用的進(jìn)氣孔為,則進(jìn)氣孔的面積為 2.54進(jìn)氣管道面積一般?。ǎ緳C(jī)選用進(jìn)氣閥,故也選用進(jìn)氣管道,其面積為1.13.b) 排氣孔的面積排氣面積大,排氣迅速,工作時(shí)震擊活塞對(duì)震擊缸的撞擊速度就越大,震擊效果也就越好,所以排氣孔面積適當(dāng)取大點(diǎn),一般3本機(jī)選用,則=9.48)壓實(shí)缸的尺寸設(shè)計(jì)壓實(shí)缸的直徑大小由選取的比壓來決定。比壓則根據(jù)造型工藝要求的鑄型硬度來選擇(要注意壓實(shí)時(shí)微震的作用,相當(dāng)于提高比壓)。當(dāng)比壓選定后,可按照下式計(jì)算壓實(shí)缸的直徑:式中:壓實(shí)缸截面積壓實(shí)缸的比壓,本機(jī)取5阻力系數(shù)(包括摩擦系數(shù)),本機(jī)取1.5壓實(shí)缸的重量kg氣墊的自重、摩擦力等一般忽略不計(jì)。式中:就是接砂缸的直徑cm帶入數(shù)據(jù)得=30cm。壓實(shí)缸的高度,一般的經(jīng)驗(yàn)公式的:(1.051.2)本機(jī)取壓實(shí)缸的高度=325mm。9)接砂缸的尺寸設(shè)計(jì)接砂活塞在上升過程中要舉起壓實(shí)活塞、震鐵、震擊活塞、工作臺(tái)、模板框、砂箱、余砂框的全部重量,要克服接砂活塞、壓實(shí)活塞上升時(shí)與缸壁間的摩擦力。此外,在加砂預(yù)震時(shí),還須承受型砂重量及預(yù)震時(shí)的動(dòng)載荷。所以接砂活塞應(yīng)具有足夠的舉升力。一般按照下式計(jì)算:式中:p壓縮空氣壓力();接砂舉升力儲(chǔ)備系數(shù);上升部分總重(kg)接砂活塞重量(kg);氣墊自重一般忽略不計(jì),其它符號(hào)意義同前,相對(duì)運(yùn)動(dòng)部分的總摩擦阻力(kg)。由于、值難以確定,生產(chǎn)中常用如下經(jīng)驗(yàn)公式:倘使p=5,并設(shè)=2,則此時(shí)=2.5。于是,接砂缸的直徑在代入數(shù)據(jù)后可得:=110mm10)接砂活塞的行程與壓實(shí)活塞的總行程A回程起模行程,應(yīng)根據(jù)所要用的模板中最高鑄模高度(倘有吊砂,還要加上吊砂高度)而定,另加適當(dāng)?shù)挠嗔浚?030);H砂箱高度(mm);B砂箱上平面與余砂框下平面之間的間距,考慮到造好型砂后,砂箱中的砂往往高出砂箱平面,為便于砂箱被推出,該距離可取2030;C余砂框的高度(mm)D靜態(tài)時(shí)余砂框上平面與澆口杯下平面之間的間距(mm)K接砂活塞升起后余砂框上平面與澆口杯下平面之間的間距(mm),它保證在定量斗壓頭移動(dòng)時(shí)澆口杯不與升起后的余砂框相碰撞,一般取510;E澆口杯高度(mm),由工藝決定;B+G接砂活塞升起后,砂箱脫離邊緄的間距,一般取2540。根據(jù)以上符號(hào)所代表的尺寸,應(yīng)有:接砂活塞行程=A+B+G=135mm壓實(shí)行程=K+C+E=170mm壓實(shí)活塞總行程 壓實(shí)活塞總行程應(yīng)等于+再加上一定的超越量,于是=310mm其中的作用是保證在放砂量不足的情況下,不會(huì)因壓不禁而產(chǎn)生塌箱的情況。少量的超越量給工藝參數(shù)的調(diào)整帶來方便,一般取=510。但必須著重指出,過大的超越量在放砂量過少或無砂的情況下進(jìn)行壓實(shí)時(shí),將造成模型與壓頭平面相撞,以致使模板及澆口杯的損壞。32.76kg17.47kg28.175kg=80kg=60kgR=7kg=80mm=140mm=28kg=6mm=10mm=4mmS=20mm=65mm=100mm=50kg進(jìn)氣孔為排氣孔=30cm=325mm=110mm=135mm=170mm=310mm3.2.7 壓頭中齒輪軸與齒條的設(shè)計(jì)設(shè)計(jì)項(xiàng)目及說明結(jié)果1) 齒輪軸的設(shè)計(jì)a) 選用齒輪材料,確定許用應(yīng)力齒輪采用40Cr,表面滲碳淬火處理,表面硬度可達(dá)5661HRC。試驗(yàn)齒輪齒面接觸疲勞極限為試驗(yàn)齒輪齒根彎曲疲勞極限齒形為漸開線直齒。最終加工為磨齒,精度6級(jí)。許用接觸應(yīng)力 由式66,接觸疲勞極限 采煤機(jī)用的齒輪的接觸和彎曲強(qiáng)度按照驅(qū)動(dòng)電機(jī)的額定全功率驗(yàn)算,因?yàn)闈L筒截割硬煤或夾矸時(shí)可能受到很大的尖峰負(fù)載。設(shè)計(jì)時(shí)間按T20000h1200000min計(jì)算。 可以算出Z2的轉(zhuǎn)速接觸強(qiáng)度壽命系數(shù) 應(yīng)用循環(huán)次數(shù)N 查接觸強(qiáng)度計(jì)算的壽命系數(shù)圖得接觸強(qiáng)度最小安全系數(shù)則許用彎曲應(yīng)力 彎曲疲勞強(qiáng)度極限 查彎曲疲勞強(qiáng)度極限圖,彎曲強(qiáng)度壽命系數(shù) 查彎曲強(qiáng)度計(jì)算的壽命系數(shù)圖彎曲強(qiáng)度尺寸系數(shù) 查彎曲強(qiáng)度計(jì)算的尺寸系數(shù)圖彎曲強(qiáng)度最小安全系數(shù) 則b) 齒面接觸疲勞強(qiáng)度設(shè)計(jì)計(jì)算確定齒輪傳動(dòng)精度等級(jí),轉(zhuǎn)速適中,功率很大,選擇齒輪精度為6級(jí)小輪分度圓直徑,由式計(jì)算齒寬系數(shù) ,按齒輪相對(duì)軸承為非對(duì)稱布置小輪齒數(shù) 在推薦值2040中選大輪齒數(shù) 齒數(shù)比 傳動(dòng)比誤差小輪轉(zhuǎn)矩 載荷系數(shù)K 使用系數(shù) 查使用系數(shù)表動(dòng)載系數(shù) 由推薦值1.051.4齒間載荷分配系數(shù) 由推薦值1.01.2齒向載荷分布系數(shù) 由推薦值1.01.2載荷系數(shù)K 材料彈性系數(shù) 查材料彈性系數(shù)表節(jié)點(diǎn)區(qū)域系數(shù) 查節(jié)點(diǎn)區(qū)域系數(shù)圖重合度系數(shù) 由推薦值0.850.92故齒輪模數(shù)m 圓整齒輪分度圓直徑 齒寬b 因?yàn)閆2為惰輪,所以它的強(qiáng)度可以達(dá)到滿足,所以沿用Z1的齒寬齒根彎曲疲勞強(qiáng)度校核計(jì)算有式 齒形系數(shù) 查齒形系數(shù)表 小輪 大輪應(yīng)力修正系數(shù) 查應(yīng)力修正系數(shù)表 小輪 大輪重合度 = 重合度系數(shù)故 2) 齒條的設(shè)計(jì)齒條的設(shè)計(jì)是在齒輪設(shè)計(jì)的基礎(chǔ)上模數(shù),齒的形狀、高度及長(zhǎng)度,都可以確定下來。齒條中有齒的長(zhǎng)度為:式中:齒條中有齒的長(zhǎng)度(mm),為回轉(zhuǎn)壓頭轉(zhuǎn)過的最大角度(弧度制)齒輪軸中齒輪的分度圓(mm)。=本機(jī)的的長(zhǎng)度還需要一些余量,一般在510左右,所以本機(jī)的長(zhǎng)度就可以確定了。公差組6級(jí)合適m3mmb=75mm齒根彎曲強(qiáng)度滿足=105mm3.2.8 齒輪軸的校核(1)求軸上的載荷首先根據(jù)軸的機(jī)構(gòu)圖作出軸的計(jì)算簡(jiǎn)圖如下圖,確定軸承的支撐位置,從手冊(cè)中查取。根據(jù)軸的計(jì)算簡(jiǎn)圖作出軸的彎矩圖,扭矩圖,和當(dāng)量彎矩圖,從軸的結(jié)構(gòu)圖和當(dāng)量彎矩圖中可以看出,C截面的當(dāng)量彎矩最大,是軸的危險(xiǎn)截面。C截面處的MH、MV、M、T及Mca的數(shù)值如下。;支反力 水平面 垂直面 彎矩MH和MV 水平面 垂直面 合成彎矩M 扭矩T 當(dāng)量彎矩Mca (2)校核該軸得強(qiáng)度軸的材料為,表面淬火,回火,。查表得,則,軸得計(jì)算應(yīng)力為 根據(jù)計(jì)算結(jié)果可知,該軸滿足強(qiáng)度要求。(3)精確校核該軸得強(qiáng)度 對(duì)于重要得軸,必須按安全系數(shù)精確校核軸得疲勞強(qiáng)度。1)盤對(duì)危險(xiǎn)界面 危險(xiǎn)截面應(yīng)該是應(yīng)力較大,同時(shí)應(yīng)力集中較為嚴(yán)重得界面。從受載情況觀察,截面C上得Mca最大,但是其軸較粗,而且是齒輪軸,應(yīng)力集中不大,故截面C不校核,。截面E應(yīng)該為危險(xiǎn)截面。2)計(jì)算危險(xiǎn)截面應(yīng)力截面右側(cè)彎矩為 截面上扭矩為 ;抗彎截面系數(shù) ;抗扭截面系數(shù) ;截面上得彎曲應(yīng)力 ;截面上的扭轉(zhuǎn)剪切應(yīng)力 ;彎曲應(yīng)力幅 ;彎曲平均應(yīng)力 ;扭轉(zhuǎn)剪應(yīng)力得應(yīng)力幅魚平均應(yīng)力相等,即;3)確定影響系數(shù) 軸得材料為,淬火加回火,查表得,。軸間圓角處的有效應(yīng)力集中系數(shù)。根據(jù)查表的;尺寸系數(shù)根據(jù)截面為圓截面查圖的表面質(zhì)量系數(shù),根據(jù),和表面加工方法為精車,查圖得,;材料彎曲、扭轉(zhuǎn)得特性系數(shù)??;由上面結(jié)果可得: 由手冊(cè)中得許用安全系數(shù)值,可知該軸安全。(4)軸承壽命的驗(yàn)算由于齒輪軸的軸承都一樣,所以只驗(yàn)算低速軸的軸承,此處略去軸承的壽命驗(yàn)算。3.3 主要技術(shù)參數(shù)砂箱最大內(nèi)尺寸 350350150工作臺(tái)面尺寸 500500震擊缸直徑 80mm預(yù)震時(shí)工作臺(tái)面振幅 5mm名義震擊力 50kg震擊頻率 200250次/分 進(jìn)氣行程 6mm膨脹行程 10mm震擊活塞重量 28kg氣墊腔直徑 65mm氣墊腔高度 110mm氣墊進(jìn)氣壓力調(diào)整范圍 23kg/余隙高度 12mm管路進(jìn)氣工作壓力 5kg/壓實(shí)缸直徑 300mm靜壓實(shí)力 800010000kg 靜壓實(shí)比壓 3 kg/自由空氣消耗量 0.4/半型最大起模行程 100mm壓實(shí)行程 150mm壓砂板與工作臺(tái)面最大距離 300mm外型尺寸 12205001205機(jī)器自重 2300kg總結(jié)大半個(gè)學(xué)期的畢業(yè)設(shè)計(jì)終于接近尾聲,從上個(gè)學(xué)期最后兩周開始的搜集資料,實(shí)際調(diào)研;到這個(gè)學(xué)期的課程設(shè)計(jì)、選題開題,繪制指定實(shí)物,教材插圖;造型機(jī)總體方案設(shè)計(jì),詳細(xì)方案設(shè)計(jì),裝配圖的繪制,終于在現(xiàn)在能夠品嘗成果了。設(shè)計(jì)過程中間遇到過不少的問題,比如開題時(shí),在選擇造型機(jī)的動(dòng)力方式問題還是討論的重點(diǎn)?后來劉老師跟我交流時(shí)主張我設(shè)計(jì)氣動(dòng)微震造型機(jī),一者,震壓式造型機(jī)技術(shù)成熟已久,而且現(xiàn)在使用的很少,甚至難以見到實(shí)物,而微震造型機(jī)在不少工廠里仍在使用;二者,我設(shè)計(jì)的造型機(jī)是用于教學(xué)用的,也就是用于教學(xué)實(shí)踐的,氣墊式微震壓實(shí)造型機(jī)工作很小,符合教學(xué)所需的條件。考慮到這兩點(diǎn),我于是將設(shè)計(jì)方向轉(zhuǎn)向了氣動(dòng)微震式造型機(jī)。氣動(dòng)微震機(jī)構(gòu)也有兩種,彈簧式和氣墊式,二者大體相似,只是震擊活塞底部緩沖機(jī)構(gòu)不同。通過對(duì)比二者的結(jié)構(gòu),性能,經(jīng)濟(jì)因素等等,我最后選擇了前者的設(shè)計(jì)。設(shè)計(jì)過程中,我將重點(diǎn)放在了震擊機(jī)構(gòu)的設(shè)計(jì)上,對(duì)于微震機(jī)構(gòu)的參數(shù)設(shè)計(jì)尤為仔細(xì)。這次畢業(yè)設(shè)計(jì),讓我重新溫習(xí)了不少基礎(chǔ)理論知識(shí),并且學(xué)習(xí)運(yùn)用它們來解決實(shí)際設(shè)計(jì)中的有關(guān)問題,制定設(shè)計(jì)方案、選擇工作參數(shù)、進(jìn)行相關(guān)分析和計(jì)算。通過這次設(shè)計(jì),讓我積累了一些設(shè)計(jì)經(jīng)驗(yàn),提高了我解決相關(guān)問題的能力,能夠用工程觀點(diǎn)看待工程問題。在整個(gè)設(shè)計(jì)中,參數(shù)化設(shè)計(jì)部分比較詳細(xì),因而沒有在結(jié)構(gòu)上做過多設(shè)計(jì),只是比較諸多已有結(jié)構(gòu),綜合權(quán)衡,選出最合適的機(jī)械結(jié)構(gòu)。另外在整個(gè)造型機(jī)的設(shè)計(jì)中,沒有對(duì)電機(jī)功率,通風(fēng),廠房等實(shí)際要素進(jìn)行考慮,因而有些地方不夠完整。但是我想通過通過以后的工作和學(xué)習(xí),這些問題會(huì)在得到答案并圓滿解決。參考文獻(xiàn)1 一機(jī)部鑄造鍛壓研究所,ZZ3112多觸頭氣動(dòng)微震高壓造型機(jī)設(shè)計(jì)計(jì)算書.2 仇宏程,鄧亨速.回轉(zhuǎn)型配流液壓振動(dòng)系統(tǒng)的參數(shù)計(jì)算J.機(jī)床與液壓,1994(2):95-101.3 高滿,崔文好,王律躬.新型液壓激振器J.重型機(jī)械,1994(1):51-55.4 王積偉.液壓激振技術(shù)的研究J.機(jī)床與液壓.1994(5):287-289.5 張英會(huì).彈簧M.北京:機(jī)械工業(yè)出版社.6 成大先.機(jī)械設(shè)計(jì)圖冊(cè).北京:化學(xué)工業(yè)出版社,3000,488.7 機(jī)械設(shè)計(jì)手冊(cè)編委會(huì).機(jī)械設(shè)計(jì)手冊(cè)(第二卷).北京:機(jī)械工業(yè)出版社,2004,2728 機(jī)械設(shè)計(jì)手冊(cè)編委會(huì).機(jī)械設(shè)計(jì)手冊(cè)(第四卷).北京:機(jī)械工業(yè)出版社,2004,839 程志紅,唐大放.機(jī)械設(shè)計(jì)課程上機(jī)與設(shè)計(jì).南京:東南大學(xué)出版社,2006.1010 莊宗元,聶如春.AutoCAD 2004 使用教程.中國(guó)礦業(yè)大學(xué)出版社.11 王延久,曹善堂,黃永壽.鑄造設(shè)備圖冊(cè).機(jī)械工業(yè)出版社,1999:33-3512 許福玲 陳堯明.液壓與氣壓傳動(dòng).北京:機(jī)械工業(yè)出版社.2006.113 甘永立.幾何量公差與測(cè)量.上海:上??茖W(xué)技術(shù)出版社,200314 張森樹.機(jī)械制造工程學(xué).沈陽:東北大學(xué)出版社,200115 王三民 諸文俊.機(jī)械原理與設(shè)計(jì).北京:機(jī)械工業(yè)出版社,200416 王曉東 周鵬翔.軸部件設(shè)計(jì).北京:機(jī)械工業(yè)出版社,198917 陳秀寧.機(jī)械設(shè)計(jì)基礎(chǔ).杭州:浙江大學(xué)出版社,2005.218 中國(guó)機(jī)械工程學(xué)會(huì).中國(guó)機(jī)械設(shè)計(jì)大典編委會(huì).南昌:江西科學(xué)技術(shù)出版社,138119 中國(guó)機(jī)械工程學(xué)會(huì)鑄造分會(huì).鑄造手冊(cè).第五卷.鑄造工藝M.北京:機(jī)械工業(yè)出版社,200220 鍛工手冊(cè)編寫組編著.鍛工手冊(cè)M.北京:機(jī)械工業(yè)出版社,197821 劉鐵牛.氣動(dòng)微震機(jī)構(gòu)的動(dòng)力學(xué)分析.大連工學(xué)院學(xué)報(bào),1992.122 劉鐵牛 王偉.氣動(dòng)機(jī)械自激振動(dòng)的研究與點(diǎn)變換法.振動(dòng)與沖擊.1993年第二期23 Tarasov,Yu.D.Improvement of brake and collecting systems of powerful inclined belt converyors.Ruda I metally(Izdatel),200224 Duan, Guangyu; Yu, Shuzheng; Han, Wanxiang Improvement on automatic control link of energy dissipation brake of GDS series belt conveyor to be pulled by wire rope. 1997A FUZZY ALGORITHM FOR SCHEDULING SOFT PERIODICTASKS IN PREEMPTIVE REAL-TIME SYSTEMSMOJTABA SABEGHI, MAHMOUD NAGHIBZADEHand TOKTAM TAGHVI RAZAVIZADEHDepartment of Computer EngineeringFerdowsi University of MashhadMashhad, Iransabeghium.ac.irnaghibum.ac.irtaghavium.ac.irMost researches concerning real-time system scheduling assume scheduling constraint to be precise. However, in the real world, scheduling is a decision making process which involves vague constraints and uncertain data. Fuzzy constraints are particularly well suited for dealing with imprecise data. This paper proposes a fuzzy scheduling approach to real-time system scheduling in which the scheduling parameters are treated as fuzzy variables. A simulation is also performed and the results are compared with both EDF and LLF scheduling algorithms. The latter two algorithms are the most commonly used algorithms for scheduling real-time processes. It is concluded that the proposed fuzzy approach is very promising and it has the potential to be considered for future research.Keywords: Fuzzy scheduling; real-time systems; EDF; LLF; MFDF; MFLF.1. IntroductionReal-time constraints are vital to industrialized infrastructure such as command and control, process control, flight control, space shuttle avionics, air traffic control systems and also mission critical computations.1,3 In all cases, time has an essential role and having the right answer too late is as bad as not having it at all. In the literature, these systems have been defined as: “systems in which their correctness of the system depends not only on the logical results of computation, but also on the time at which the results are produced”.1 Such a system must react to the requests within a fixed amount of time which is called deadline. In general, real-time systems can be categorized into two important groups: hard real-time systems and soft real-time systems. In hard real-time systems, meeting all deadlines is obligatory, while in soft real-time systems missing some deadlines is tolerable. In both cases, when a new task arrives, the scheduler has to schedule it in such a way that guaranties the deadline to be met. As stated in Ref. 1 scheduling involves allocation of resources and time to tasks in such a way that certain performance requirements are met.Real-time tasks can be classified as periodic or aperiodic. A periodic task is a kind of task that occurs at regular intervals, and aperiodic task occurs unpredictably. The length of the time interval between the arrivals of two consecutive requests in a periodic task is called period. Another aspect of scheduling theory is to decide whether the currently executing task should be allowed to continue or it has had enough CPU time for the moment and should be suspended. A preemptive scheduler can suspend the execution of current executing request in favor of a higher priority request. However, a nonpreemptive scheduler executes the currently running task to completion before selecting another request to be executed. A major problem that arises in the preemptive systemsis the context switching overhead. The higher the number of preemptions a system has, the more context switching is needed.5 There are a plenty of real-time scheduling algorithms that are proposed in the literature. Each of these algorithms bases its decision on certain parameter while attempting to schedule tasks to satisfy their time requirements. Some algorithms use parameters that are determined statically such as the Rate Monotonic algorithm that uses the request interval of each task as its priority.7,15 Others use parameters that are calculated at run time. Laxity and deadline are among those parameters that are the most considered. Laxity says the task execution must begin within a certain amount of time while deadline implies the time instant at which its execution must be completed.2In the following, there are descriptions of two famous algorithms which are commonly used in real-time systems and are proved to be optimal for uniprocessorsystems when the system load factor is less than one. The system load factor isdefined as follow:Earliest Deadline First (EDF) is a dynamic algorithm that does not require processes to be periodic. Whenever a process needs the CPU time, it announces its presence and its deadline. This algorithm keeps a list of running processes that is sorted on deadlines. It always runs the first process on the list that is, the one with the closest deadline. When a new process becomes ready, the algorithm first checks its deadline. If this deadline occurs before the currently running process, then the algorithm preempts the current one and starts the new process. The Least-Laxity-First (LLF) scheduling algorithm assigns higher priority to a task with the least laxity. The algorithm, however, is impractical to implement because laxity tie results in the frequent context switches among the tasks.4 Static scheduling works perfect when there is enough information in advance about what has to be done, but dynamic scheduling does not have this restriction. Although the dynamic algorithms focus on timing constraints but there are other implicit constraints in the environment, such as uncertainty and lack of complete knowledge about the environment, dynamicity in the world, bounded validity time of information and other resource constraints. In real world situations, it would often be more realistic to find viable compromises between these objectives. For many problems, it makes sense to partially satisfy objectives. The satisfaction degree can then be used as a parameter for making a decision. One especially straightforward method to achieve this is the modeling of these constraints through fuzzy constraints.The scope of the paper is confined to scheduling of preemptive periodic tasks in soft real-time systems with fuzzy constraints. The rest of the paper is organized as follow. In Sec. 2, the fuzzy inference system is discussed. Section 3 covers the proposed model and Sec. 4 contains the experimental results. Conclusion and futureworks are debated in Sec. 5.2. Fuzzy Inference SystemFuzzy logic is an extension of Boolean logic dealing with the concept of partial truth which denotes the extent to which a proposition is true.Whereas classical logic holds that everything can be expressed in binary terms (0 or 1, black or white, yes or no), fuzzy logic replaces Boolean truth values with a degree of truth. Degree of truth is often employed to capture the imprecise modes of reasoning that play an essential role in the human ability to make decisions in an environment of uncertainty andimprecision.Fuzzy Inference Systems (FIS) are conceptually very simple. They consist of an input, a processing, and an output stage. The input stage maps the inputs, such as deadline, execution time, and so on, to the appropriate membership functions and truth values. The processing stage invokes each appropriate rule and generates a corresponding result. It then combines the results. Finally, the output stage converts the combined result back into a specific output value.6The membership function of a fuzzy set corresponds to the indicator function of the classical sets. It is a curve that defines how each point in the input space is mapped to a membership value or a degree of truth between 0 and 1. The most common shape of a membership function is triangular, although trapezoidal and bell curves are also used. The input space is sometimes referred to as the universe of discourse.6As discussed earlier, the processing stage which is called inference engine is based on a collection of logic rules in the form of IF-THEN statements where the IF part is called the “antecedent” and the THEN part is called the “consequent”. Typical fuzzy inference systems have dozens of rules. These rules are stored in a knowledgebase. An example of a fuzzy IF-THEN rule is: IF laxity is critical then priority is very high, which laxity and priority are linguistics variables and critical and very high are linguistics terms. Each linguistic term corresponds to membership function. An inference engine tries to process the given inputs and produce an output by consulting an existing knowledgebase. The five steps toward a fuzzy inference are as follows: Fuzzifying Inputs Applying Fuzzy Operators Applying Implication Methods Aggregating All Outputs Defuzzifying outputsBellow is a quick review of these steps but a detailed study is not in the scope of this paper. Fuzzifying the inputs is the act of determining the degree to which they belong to each of the appropriate fuzzy sets via membership functions. Once the inputs have been fuzzified, the degree to which each part of the antecedent has been satisfied for each rule is known. If the antecedent of a given rule has more than one part, the fuzzy operator is applied to obtain one value that represents the result of the antecedent for that rule. The implication function then modifies that output fuzzy set to the degree specified by the antecedent. Since decisions are based on the testing of all of the rules in an FIS, the results from each rule must be combined in order to make a decision. Aggregation is the process by which the fuzzy sets that represent the outputs of each rule are combined into a single fuzzy set. The input for the defuzzification process is the aggregated output fuzzy set and the output is a single value. This can be summarized as follows: mappinginput characteristics to input membership functions, input membership function to rules, rules to a set of output characteristics, output characteristics to output membership functions, and the output membership function to a single-valued output.There are two common inference processes.6 First is called Mamdanis fuzzy inference method proposed in 1975 by Ebrahim Mamdani8 and the other is Takagi- Sugeno-Kang, or simply Sugeno, method of fuzzy inference, introduced in 1985.9 These two methods are the same in many respects, such as the procedure of fuzzifying the inputs and fuzzy operators.The main difference between Mamdani and Sugeno is that the Sugeno output membership functions are either linear or constant but Mamdanis inference expects the output membership functions to be fuzzy sets. Sugenos method has three advantages. First, it is computationally efficient, which is an essential benefit to real-time systems. Second, it works well with optimization and adaptive techniques. These adaptive techniques provide a method for the fuzzy modeling procedure to extract proper knowledge about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. However, in this paper, we will not consider these adaptive techniques. The third advantage of Sugeno type inference is that it is well-suited to mathematical analysis.3. The Proposed ModelThe block diagram of our inference system is presented in Fig. 1. In the proposed model, the input stage consists of two linguistic variables. The first one is an external priority (EPriority) which is the priority assigned to the task from the outside world. This priority is static. One possible value can be the tasks interval, as rate monotonic algorithm does. For Fig. 1, the other input variable is the laxity. This input can easily be replaced by deadline, wait time, or so on, for other scheduling algorithms. Each parameter may cause the system to react in a different way. The only thing that should be considered is that by changing the input variables, the corresponding membership functions may be changed accordingly. For simulation purposes, as it is discussed later, two situations are recognized: First, by using laxity as a secondary parameter and, second, by replacing the laxity parameter with deadline. In fact, two algorithms are suggested: one with laxity as the second parameter. This algorithm is called MFLF.a The other algorithm is with deadline as the second parameter, called MFDF.b The input variables mapped into the fuzzy sets are illustrated in Figs. 2 and 3. The shape of the membership function for each linguistic term is determined by the expert. It is very difficult for the expert to adjust these membership functions in an optimal way. However, there are some techniques for adjusting membership functions.10,13 In this paper, we will not consider these techniques. They can be further studied in a separate paper.aMinimum fuzzy laxity first.bMinimum fuzzy deadline first.4. Experimental ResultsThe simulation consists of two parts. First, the system was examined for the case where the system load factor is less than one. Second, the system was observed in overloaded conditions. These divisions are suggested because, first, both EDF and LLF algorithms have proven to be optimal in situations where the system load factor is less than one. The results of this phase shows whether or not the simulation is performed correctly. A correct simulation will reveal that there is no task misses for either of EDF and LLF algorithms. At the same time, it will show whether or not our algorithms perform as well as the EDF and LLF. Second, recall that soft real-time systems, as their definition implies, can tolerate some deadline misses. In real situations, there is no guarantee for soft real-time systems not to be overloaded. Evaluating systems in overloaded conditions is important in comparing the behavior of our scheduling algorithms with the existing EDF and LLF algorithms. As it was discussed earlier, LLF is impractical to implement, so we decided to use a modified version of it that solves the problem of frequent context switches. This modified algorithm is fully discussed in Ref. 4 and is proven to be optimal. To compare these algorithms, we need to automatically generate some samplesystems. The system generation methods will be discussed later.Performance metrics, which are used to compare different algorithms, must be carefully chosen to reflect the real characteristics of a system. These metrics are as follows. Response time, which is defined as the amount of time a system takes to react to a given input, is one of the most important factors in most scheduling algorithms. Number of missed deadlines is an influential metric in scheduling algorithms for soft real-time systems. When task preemption is allowed, another prominent metric comes into existence and that is the number of preemptions. Each preemptions requires the system to perform a context switching which is a time consuming action. CPU utilization is also an important metric because the main goal of a scheduling algorithm is to assign and manage system resources so that a good utilization is achieved. Yet another metric, which is considered in our study, is the number of missed deadlines from the class of the highest priority tasks. This corresponds to the external priority being very high.4.1. Comparison in non-overloaded conditionsThis comparison was mainly performed to show the correctness of the simulations. To do the evaluation, 2,500 test cases with load factors less than one were generated. In each test case, the number of tasks and the corresponding execution time and request interval were randomly generated. For this simulation phase, the goal is to compare average response time. Figure 4 states that all four algorithms show approximately the same performance with respect to the response time. The results are exactly what we have expected. The average response time of the test cases is summarized in Table 1. 4.2. Comparison in overloaded conditionsComparison parameters which are used here are average response time, number oftasks missing their deadlines, number of preemptions, and CPU utilization.The simulation was done on the 2,500 mentioned test cases. These test cases were randomly generated. In each test case, the number of tasks and the corresponding execution time and request interval were randomly generated. Also, each task has been assigned a priority according to the rate monotonic principle (tasks with shorter request interval are given higher priorities).7 As stated in Fig. 5, when the load factor is less than one, all the algorithms have similar performances. However, when the system becomes overloaded, the response time of both EDF and LLF is much tardier than MFLF and MFDF. Figure 6 states that for load factors less than one, the number of misses is zero. This is because it has already been proved that any system with a load factor less than or equal to one runs safe under either of EDF and LLF. Fortunately, MFLF and MFDF perform as well as either of EDF and LLF. In this case, the number of misses is exactly zero for all four algorithms. Because in drawing diagrams some curve fitting techniques is used, it seems that the number of misses for algorithms when the load factor is a little bit less than one is a positivenumber. However, we have examined the numerical results and confirm that the number of misses is exactly zero. When the load factor is more than one the MFDF has the best performance and MFLF has a performance similar to EDF. The LLF has the worse performance among all four algorithms.As Fig. 7 shows, there is an opposite relation between the numbers of preemptions on the one hand and response time on the other. As the response time gets better, number of preemptions comes to worse value.MFDF that has the best performance with respect to response time has a larger number of preemptions. But there is something good about it, and that is, its behavior is predictable as it acts in a linear way. Having higher number of preemptions is reasonable because it eventually leads to having better response time and also better CPU utilization. There should be a balance between the number of preemptions and other factors. Reference 11 argues why such a balance is needed. Figure 8 demonstrates that with the fuzzy methods CPU utilization is much higher than non-fuzzy methods. When the load factor is about 3, the MFDF and MFLF use about 80 percent of CPU time while EDF uses 60 percent of CPU time and the LLF just uses about 20 percent of CPU time. Considering the number of missed deadlines from the class of highest priority tasks, Fig. 9 shows that both MFDF and MFLF perform much better than EDF and LLF. Comparing Fig. 9 with Fig. 6 shows that in load factor 3 about 80 percentof missed deadlines in both EDF and LLF are from the class of highest priority tasks while in MFDF and MFLF just about 30 percent of misses are among the highest priority tasks. This is because external priority is considered as a decision parameter in the latter two algorithms. It should be mentioned that highest priority tasks in this simulation as discussed earlier are those with shorter request intervals. These kinds of tasks since their deadline is too short may miss their deadline more often than the others. This is why in EDF and LLF about 80 percent of the misses are among these tasks.5. Conclusion and Future WorksUsing the fuzzy concept in real-time scheduling, as it was shown, has the following advantages: (1) it better utilizes system resources such as CPU, (2) it decreases the number of missed deadlines, (3) it improves the system response time, and (4) it serves more important tasks better.In future, to improve the overhead of the system, rule reduction techniques are going to be applied to the system. Also, to improve performance, adjusting membership functions with adaptive methods of inference is required.10,13 Fuzzy scheduling is well suited for parallel and distributed systems as some parallel and distributed fuzzy inference systems have been introduced.14 A detailed analysis of fuzzy scheduling for parallel systems is in progress. A non-preemptive version of this algorithm is also published in Ref. 12.中文譯文搶占實(shí)時(shí)系統(tǒng)中調(diào)度軟周期任務(wù)的模糊運(yùn)算MOJTABA SABEGHI,MAHMOUD NAGHIBZADEHandTOKTAM TAGHVIRAZAVIZADEH計(jì)算機(jī)工程學(xué)部馬什哈德菲爾多西大學(xué)馬什哈德,伊朗sabeghium.ac.irnaghibum.ac.irtaghavium.ac.ir大多數(shù)的關(guān)于實(shí)時(shí)系統(tǒng)的研究都把調(diào)度和假想調(diào)度約束的很精確。然而,事實(shí)上,調(diào)度安排是一個(gè)決策程序包括著模糊約束和不確定的數(shù)據(jù)。模糊約束特別適合處理不精確的數(shù)據(jù)。本文提出一種在調(diào)度參數(shù)被當(dāng)做模糊變量的實(shí)時(shí)系統(tǒng)中的近似模糊調(diào)度。模擬運(yùn)行后結(jié)果將和EDF、LLF比較,后兩者是目前在實(shí)時(shí)調(diào)度程序中最普遍采用的算法??偨Y(jié)出這個(gè)提議非常有潛力,值得以后長(zhǎng)期研究。關(guān)鍵詞:模糊調(diào)度,實(shí)時(shí)系統(tǒng),EDF,LLF,MFDF,MFLF。1.簡(jiǎn)介實(shí)時(shí)限制在工業(yè)化設(shè)施中非常重要,例如指令、控制、過程控制、飛行控制、太空穿梭電子技術(shù)、空中交通控制系統(tǒng)及臨界計(jì)算任務(wù)。時(shí)間在其中都全部扮演一個(gè)重要的角色,來的晚不如不來。在文獻(xiàn)中,這些系統(tǒng)已被認(rèn)為: 系統(tǒng)其正確性,不僅取決于邏輯計(jì)算結(jié)果,也取決于結(jié)果產(chǎn)生的時(shí)間。一個(gè)系統(tǒng)對(duì)請(qǐng)求必須作出反應(yīng)所需要的大量的時(shí)間,這就是所謂的期限。一般來說,這些系統(tǒng)可分為兩個(gè)重要群體:硬實(shí)時(shí)系統(tǒng)和軟實(shí)時(shí)系統(tǒng)。在硬實(shí)時(shí)系統(tǒng)中,所有的面向期限是強(qiáng)制性的,而在軟實(shí)時(shí)系統(tǒng)中缺少某些期限是可以容忍的。在這兩種情況下,當(dāng)有新的任務(wù)時(shí),調(diào)度已經(jīng)按時(shí)運(yùn)行,它以這樣一種方式和保證最后期限以達(dá)到要求。正如在(參考1)調(diào)度牽涉到任務(wù)的資源的分配和時(shí)間,通過上面的方式,某些性能要求便可得到滿足。實(shí)時(shí)任務(wù)可以經(jīng)典化為周期性和非周期性任務(wù)。周期性的任務(wù)是一種發(fā)生在固定的間隔的任務(wù)而非周期性任務(wù)發(fā)生難以預(yù)測(cè)。一個(gè)階段性的任務(wù)中兩個(gè)連續(xù)的請(qǐng)求所占的時(shí)間,是所謂的周期。另一個(gè)方面的調(diào)度理論,是是否決定目前正在執(zhí)行的任務(wù)應(yīng)允許繼續(xù)下去,或者它的CPU時(shí)間已經(jīng)足夠長(zhǎng),此時(shí)應(yīng)暫停使用。先運(yùn)行的調(diào)度程序可以暫停執(zhí)行,有利于更高的優(yōu)先請(qǐng)求。然而,一個(gè)不可中斷的調(diào)度執(zhí)行當(dāng)前正在運(yùn)行的任務(wù)完成之前,選擇另一個(gè)要求將被中斷。主要的問題是我們?cè)谶@一先運(yùn)行的系統(tǒng)是上下切換運(yùn)行。搶占系統(tǒng)數(shù)量越多,所需要的上下切換越多。在文獻(xiàn)中有大量的實(shí)時(shí)調(diào)度算法的方案。上述各種方案需要特定的參數(shù)以達(dá)到時(shí)間上的要求。有些方案采用靜態(tài)的參數(shù)如單調(diào)速率,以每步所需間隔時(shí)間作優(yōu)先考慮。中斷和期限是其中的最需考慮的參數(shù),中斷就是執(zhí)行任務(wù),必須從內(nèi)部暫停一定的時(shí)間,而最后期限就意味著在瞬間,其執(zhí)行必須完成。介紹,介紹了兩個(gè)著名的算法,這是常用于實(shí)時(shí)系統(tǒng),并證明最適用于單處理器
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
提示  人人文庫網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。
關(guān)于本文
本文標(biāo)題:FZYJ — 12翻臺(tái)式震壓造型機(jī)
鏈接地址:http://ytny.net.cn/paper/102079509.html

官方聯(lián)系方式

2:不支持迅雷下載,請(qǐng)使用瀏覽器下載   
3:不支持QQ瀏覽器下載,請(qǐng)用其他瀏覽器   
4:下載后的文檔和圖紙-無水印   
5:文檔經(jīng)過壓縮,下載后原文更清晰   
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

網(wǎng)站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文庫版權(quán)所有   聯(lián)系電話:400-852-1180

備案號(hào):蜀ICP備2022000484號(hào)-2       經(jīng)營(yíng)許可證: 川B2-20220663       公網(wǎng)安備川公網(wǎng)安備: 51019002004831號(hào)

本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知人人文庫網(wǎng),我們立即給予刪除!