2025年生成式人工智能展望報告:面向企業(yè)管理者與高管(英文版)-Caylent_第1頁
2025年生成式人工智能展望報告:面向企業(yè)管理者與高管(英文版)-Caylent_第2頁
2025年生成式人工智能展望報告:面向企業(yè)管理者與高管(英文版)-Caylent_第3頁
2025年生成式人工智能展望報告:面向企業(yè)管理者與高管(英文版)-Caylent_第4頁
2025年生成式人工智能展望報告:面向企業(yè)管理者與高管(英文版)-Caylent_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

CAYL三NT

The2025OutlookonGenerativeAl

InsightsforBusinessLeaders&Executives

RandallHunt,CTO

GuilleOjeda,CloudSoftwareArchitect

AnatFraenkel,GenAIProgramLeader

MelissaLeide,LeadExperienceDesigner

CAYL三NT

TableofContents

Introduction03

KeyDevelopmentsof202404

FocusAreasfor202505

CoreTrendsandPredictions06

AgenticArchitectures06

OptimizationforCost,Performance,andSecurity07

MultimodalAlandDataProcessing08

EvolvingSearchandDiscoveryTechnologies09

ProductsOverModels10

DecentralizedAlandFederatedLearning11

AlGovernance&LLMOps12

GenerativeAIUI/UX14

ShouldYouBuildorBuyGenerativeAISolutions?16

CaseStudies17

Multi-AgentSystemsinEnterpriseWorkflows17

AgenticAl-PoweredVoiceService18

LookingForward19

Let'sGetStarted20

2025OutlookonGenerativeAl|02

CAYL三NT2025OutlookonGenerativeAl|03

Introduction

ThegenerativeAllandscapehasfundamentally

shiftedfromexperimentaltechnologytoenterprise-readysolutionsthatdrivemeasurablebusiness

value.ModerngenerativeAlsystemsdemonstratesophisticatedcapabilitiesinorchestratingcomplextasks,processingmultipletypesofdata,and

adaptingtospecificbusinesscontextswhilemaintainingrobustsecurityandgovernanceframeworks.

Enterpriseadoptionofthesetechnologiescontinuestoaccelerate,withGartnerprojectingthat33%of

enterprisesoftwareapplicationswillincorporate

agenticAlcapabilitiesby2028,upfromlessthan1%in2024.Organizationsimplementingthesesystems

reportsignificantoperationalimprovements,withsomesaving70%ofanalysts'timebyautomatingmanualdataretrieval.

Thiswhitepaperprovidesenterpriseleaders

withapracticalframeworkforimplementing

generativeAltechnologies,focusingoncost

optimization,operationalexcellence,and

responsibledevelopment.Drawingfromreal-

worldimplementationsandindustryresearch,weexaminekeytrends,technicalrequirements,andstrategicconsiderationsthatwillshapesuccessfuldeploymentsin2025.

CAYL三NT2025OutlookonGenerativeAl|04

KeyDevelopmentsof2024

ThispastyearbuiltthefoundationforenterprisegenerativeAladoption.

ArchitecturalAdvancement

Thepracticalimplementationofagent-basedsystemsmovedfromtheoreticalframeworkstoproduction

deployments.MajorcloudproviderslikeAWSintroducedrobustorchestrationframeworks,enabling

organizationstoimplementcomplexmulti-agentworkflowswhilemaintainingsecurityandgovernance

controls.AnotableexampleisAmazonBedrock'sMulti-AgentOrchestration,whichwasannouncedinpreviewinDecember2024.Thisserviceprovidesenterpriseswithascalableframeworkforimplementingagentic

workflows.

PerformanceOptimization

Significantprogressinmodeldistillationandinferenceoptimizationaddressedthecomputationaland

economicchallengesoflarge-scaledeployments.Theseadvancesmakeenterprise-scaledeploymentmorepractical,withdistilledmodelsinAmazonBedrockbeingupto500%faster.

MultimodalIntegration

Theintegrationoftext,image,audio,andvideoprocessingcapabilitieshasbecomemoresophisticatedand

practical.ThisadvancementenablesmorenaturalinteractionsbetweenAlsystemsanduserswhileexpandingpotentialapplicationsacrossindustries.AmazonNova'smultimodalmodels,whichlaunchedinDecember

2024,representasignificantsteptowardsmorecost-efficientmultimodalprocessing.

GenerativeAIBuildingBlocks

UIInterface

Corp

(lhakts,Teams,Etc.)

WebInterface

CustomMobileApp

APIGateway

Orchestration

BedrockAgents/Flows

Python/Typescript

LlamalndexLangChain

Prompt

Management

PromptConstruction

PromptVersioning

Session/ChatHistory

ContextManagement

Embedding

VectorStores

EmbeddingModel

Vector/DocumentPG

OS

Kendra

Redis

RealTimeQueries

Models

BedrockLLMs

Cohere

Claude

Nova

SagemakerLLMs

Llama

Cohere

OSSModelsHuggingFace

DeepSeek

Infrastructure

TraniumInferentia

Bedrock

SageMakerAl

EC2/ECS/EKS

CAYL三NT2025OutlookonGenerativeAl|05

FocusAreasfor2025

ThetransformationofgenerativeAlfromexperimentaltechnologytoenterprisecornerstonebringsbothopportunitiesandchallenges.OrganizationsthatunderstandthesedynamicsandprepareaccordinglywillbebestpositionedtoleverageAl'scapabilitiesforacompetitiveadvantagewhilemaintainingoperationalexcellenceandethicalstandards.Thesefocusareasare:

01.CostandPerformanceOptimization

Largemodelscanbepowerfulbutexpensive-attimesmorepowerfulthanisneeded.Organizationsshouldbalancethecapabilitiesoflargemodelswiththepracticalityofspecialized,task-specificimplementations

thatcanoperatewithinreasonablecomputationalandeconomicconstraints.Thisrequirescarefulattentiontomodelselection,modeldistillation,deploymentarchitecture,andongoingoptimizationstrategies.Industrybenchmarksarehelpfulwhenevaluatingmodels,butorganizationsshouldevaluatemodelsandoptimizationoptionsbasedontheirbusinessneeds.

02.OperationalExcellence

DeployinggenerativeAlsystemsrequiresrobustoperationalframeworksthatensurereliability,security,andgovernance.Theseframeworksmustimplement:

·Comprehensivemonitoringandobservabilitysystemsthattrackbothtechnicalperformanceandbusinessoutcomes

·Clearaccountabilitystructuresthatdefinerolesandresponsibilitiesacrosstechnicalandbusinessteams

·Effectiveriskmanagementprotocolsthatensureresponsibledeployment

03.Human-AICollaboration

TheevolvingcapabilitiesofAlsystemsareredefininghowhumansinteractwithtechnology,necessitating

newframeworksforintuitive,transparent,andadaptablecollaboration.Successin2025willrequirethoughtfulinteractiondesignthatensuresAlenhances-ratherthancomplicates-userexperiences.Thismeans

establishingclearprotocolsfordecision-makingauthority,usercontrol,andexplainability,ensuringAl-drivensystemsarebothtrustworthyandseamlesslyintegratedintoworkflows.

Organizationsmustdesigninterfacesthatsupportcooperativeproblem-solving,whereAlaugmentshumanexpertiseratherthanoperatinginisolation.Investinginbothtechnicalcapabilitiesandhuman-centeredAldesignwillbeessentialtomaximizingthevalueofthesesystems.GenerativeAI'spotentialextendsbeyondautomation-itshouldbeleveragedtocreateadaptive,user-drivenexperiencesthatoptimizebothcustomerandemployeeinteractions.

Thefollowingchaptersexplorethesethemesindetail,providingconcreteguidanceforimplementationandstrategicplanningintheevolvinglandscapeofgenerativeAl.

CAYL三NT2025OutlookonGenerativeAl|06

Cost&PerformanceOptimizationOperationalExcellenceHuman-AICollaboration

CoreTrendsand

Predictionsfor2025

01.AgenticArchitectures

AccordingtoGartner'sframework,Alagentsare

definedas"goal-drivensoftwareentitiesthatuseAltechniquestocompletetasksandachievegoals.”TheevolutionfromtraditionalAlmodelstoagent-basedsystemsenablesorganizationstoautomatecomplexworkflowswhilemaintainingappropriatehumanoversightandcontrol.

UnlikethegenerativeAlsystemswe'vebecome

accustomedtoinrecentyears-thosethatsimply

respondtoprompts-agent-basedarchitectures

enableAlsystemstomovebeyondsimplequestion-answering.Theyachievethisbybreakingdown

complexproblemsintomanageablecomponents.Theycreateexecutionplans,coordinatemultiple

specializedagentsworkinginparallelwhen

applicable,andadjusttheirapproachbasedon

intermediateresultsandchangingconditions.Most

importantly,theyshouldmaintainappropriatehumanoversighttoensureoptimalandresponsibleresults.

AgenticarchitecturesmakeAlworkflowsmore

modularandscalablebyhandlingmulti-step

processesautomatically.Withoutagents,generatinganansweroftenrequiresmultiplecallstodifferentAlsystems,whichrequiressignificantcustom

configurationandmaintenanceand,therefore,

canbeexpensive.Inanagent-basedsystem,we

movethisresponsibility-thesesteps-totheagentsupervisor.Agentsorchestratethesesteps,reducingcomplexityandmakingiteasiertoadaptworkflowsovertime.Thisapproachalsoabstractsaway

processdetailssothecallerdoesn'tneedtomanageindividualstepsorconfigurations,allowingforfasteriterationandeasiermaintenance.

TheBottomLine

Ourexperienceshowsthatagenticarchitectures

breakcomplexAlapplicationsintosmaller,self-

containedparts,makingthemeasiertobuild,scale,andmaintain.ThisisespeciallycriticalforcomplexgenerativeAlapplications,asitenablesbetter

softwareengineeringpracticeswhichareessentialforenterprise-grade,production-readygenerativeAl

applications.Italsoimprovesresultsbyensuringeachagentoperateswithinitsisolatedinferencecontextratherthanasharedone.Thelong-term

benefitsofusingagentstoarchitectgenerativeAlapplicationsareclear,evenifthecurrentmarketinghypedoesn'tholdupforlong.

CAYL三NT2025OutlookonGenerativeAl|07

Cost&PerformanceOptimizationOperationalExcellenceHuman-AICollaboration

02.Optimizationfor

Cost,Performance,and

Sustainability

AsorganizationsscaletheirgenerativeAl

implementations,optimizationbecomesincreasinglyimportantformaintainingoperationalefficiencyandcontrollingcosts.Successfuloptimizationstrategiesaddressmultipledimensionsofsystemoperations,frommodelarchitecturetoresourceutilization.

ModelDistillation&Specialization

ModeldistillationhasemergedasakeystrategyforoptimizinggenerativeAldeployments.Thisapproachenablesorganizationstomaintain

highperformancewhilesignificantlyreducing

computationalrequirements.Ituseslargermodelsasabasistocreatesmaller,purpose-specific,or

domain-specificmodels.Thesesmallermodelscanperformjustaswellastheirbiggercounterpartsintheirspecificdomainsorpurposeswhileusingmuchfewerresourcesforinference.

Theeconomicsofmodeldistillationpresentsa

compellingcaseforoptimization.Initialinvestmentstypicallyincludeinfrastructuresetup,specialized

expertise,developmenttime,anddatapreparation.WithAmazonBedrockModelDistillation,youcantrainsmallermodelstomimichigh-performanceones,makingthemuptofivetimesfasterand75%cheaperforspecificusecases.

InferenceOptimization

Efficientinferencerepresentsoneofthemost

significantopportunitiesforperformance

improvementandcostreductioningenerative

Alsystems.Thistopicbringsupconceptslike

MinimumViableTokens(MVT),whichishowmuchyoucanoptimizebothinputandoutputtokens

toreducecostswhilemaintainingoutputquality.

Thisapproachrequiresenhancedmanagementofcontextwindows,promptengineeringefficiency,andselectivedataloadingpatterns.

Ourexperiencewithmultipleclientshastaughtusthatcarefullymanagingtokensandusingreducedpromptstypicallyresultsinareductionintoken

usage,whilemaintainingresponsequality.This

translatesdirectlytocostsavingsonmodelusage,particularlyinhigh-volumeapplicationswhereevensmalloptimizationscanyieldsignificantfinancialbenefits.

ThoughtfuldesignofgenerativeAlapplications

canalsouncoveradditionalopportunitiesfor

improvement,suchasrequestbatching.Amazon

Bedrock'sBatchInferencefeatureoffersa50%pricereductioncomparedtoon-demandinference,whichisespeciallyusefulfordataingestionandnon-time-sensitiveinference.

SustainabilityConsiderations

TheenvironmentalimpactofAlsystemshas

becomeanimportantconsideration,driving

innovationsinenergy-efficientcomputingand

sustainableoperations.RecentdevelopmentsinspecializedAlhardware,suchasAWSTrainium2chips,demonstratesignificantimprovementsinenergyefficiency.Theseadvancedprocessors

achievea30%improvedpriceperformanceoveroldermodelsanda29%reductioninenergy

consumption.

TechniqueslikeParameter-EfficientFine-Tuning

(PEFT)canalsohelporganizationsachieve

performancecomparabletofine-tuningbyusing

fewertrainableparametersand,consequently,fewercomputationalresourcesandenergyconsumption.

SuccessinoptimizinggenerativeAlsystems

requiresabalancedapproachthatconsiderscost,performance,andsustainability.OrganizationsthatsuccessfullyimplementcomprehensiveoptimizationstrategiespositionthemselvestoscaletheirAl

initiativeseffectivelywhilemaintainingoperationalefficiencyandenvironmentalresponsibility

Thisholisticapproachtooptimizationenables

sustainablegrowthwhileensuringmaximumvaluefromAlinvestments.

Cost&PerformanceOptimizationOperationalExcellenceHuman-AICollaboration

03.MultimodalAl

andDataProcessing

TheevolutionofgenerativeAlfromsingle-modalitysystemstocomprehensiveplatformscapableof

processingmultipletypesofcontentrepresents

afundamentaladvancementinenterprise

Alcapabilities.Modernmultimodalsystems

demonstratesophisticatedabilitiesinunderstandingandgeneratingdiversecontenttypes,enabling

morenaturalandcomprehensiveinteractions

betweenAlsystemsanduserswhileintroducingnewrequirementsfordataprocessingandsystemintegration.

ModernAlsystemscansimultaneouslyprocess

text,images,audio,andvideo,extractingmeaningfromtherelationshipsbetweendifferentmodalities.AmazonNova'smultimodalmodelsdemonstrate

thematurityofthesecapabilitiesthroughtheir

abilitytomaintaincontextacrossmodalitieswhilegeneratingcoherent,multi-formatresponses.Forexample,whenanalyzingcustomerfeedback,a

multimodalsystemcancombinetextsentimentanalysiswithvocaltoneassessmentandfacial

expressionrecognitiontoprovideamoreaccurateunderstandingofcustomersatisfaction.

ThepracticalapplicationsofmultimodalAlspanmultipleindustriesandhavethepotentialto

improveoperationalefficiencyanduserexperiencesignificantly.Inretailenvironments,multimodal

systemsenableproductdiscoveryexperiencesbycombiningvisualsearchcapabilitieswithnaturallanguageunderstanding.Healthcareorganizationsleveragemultimodalsystemsforenhanced

diagnosticsupport,combiningimaginganalysiswithpatienthistoryandsymptomdescriptions.

MediaandentertainmentcompaniesimplementmultimodalAlforcontentanalysisandgeneration,enablingautomatedcontenttagging,personalizedrecommendations,andinteractiveexperiences.

OrganizationsimplementingmultimodalAlsystemsmustaddressseveraltechnicalchallengestoensuresuccessfuldeployment.ModelfamilieslikeCohere,AmazonTitan,andLlamaareexcellentfordata

processingoptimization,thoughformat-specific

requirementsneedcarefulattention.Successful

implementationstypicallyemployunifieddata

pipelinesthatusepreprocessingstepstohandle

specificformatsandjointhedatainawaythat

maintainssemanticrelationshipsacrossmodalities.

Integrationcomplexitypresentsanothersignificantchallenge,particularlyinenterpriseenvironments

withexistingsystemsandworkflows.Organizationsmustimplementstandardizedinterfacesandrobustsynchronizationmechanismstoensurereliable

operationacrossdifferentmodalities.Success

requirescarefulattentiontometadatamanagementanderror-handlingstrategiesthatmaintainsystemreliabilitywhileenablingefficientprocessingof

diversecontenttypes.

CAYL三NT2025OutlookonGenerativeAl|09

Cost&PerformanceOptimizationOperationalExcellenceHuman-AICollaboration

04.EvolvingSearchand

DiscoveryTechnologies

ThelandscapeofsearchanddiscoveryingenerativeAlhasevolvedsignificantly,movingbeyond

simplevectorembeddingstoinnovativesystemsthatcombinemultipleapproachesforenhancedaccuracyandrelevance.ThisevolutionrepresentsafundamentalshiftinhowAlapplicationsprocessandretrieveinformation,enablingmorenuancedunderstandingandmoreaccurateresponses.

AdvancedRetrievalArchitectures

Modernsearchanddiscoverysystemsleverage

multiplecomplementarytechniquestooptimize

informationretrievalandenhancethequalityof

Al-generatedresponses.Ourexperiencehasshownthathybridsearches,theintegrationofsemantic

vectorsearchwithtraditionalkeywordmatchingandstructuralmetadataanalysis,enableamorecomprehensiveunderstandingofcontentandcontext.

TheadoptionofGraphRAG(Graph-enhanced

RetrievalAugmentedGeneration)representsa

advancementinsearchcapabilities.ThisapproachintegratestraditionalRAGwithknowledgegraph

structures,enablingsystemstounderstandand

leveragecomplexrelationshipsbetweenpieces

ofinformationbeyondwhatvectorembeddings

canrepresent.Theknowledgegraphcomponent

maintainsdetailedmappingsofentityrelationshipsandcontextualconnections,enablingmoreaccurateinformationretrieval.

AnothersignificantdevelopmentisagenticRAG.

TraditionalRAGimplementationsuseasingle

sourceofadditionalinformation,oratmosta

handfulofsources.Thesesourcesaretypicallyallqueriedforeveryrequest,withthemostcomplex

implementationsutilizingsimplelogicrulestoselectsources.Incontrast,agenticRAGletseachagent

decidewhichsourcestoqueryamongthemultiple

sourcesavailabletothatspecificagent.With

eachagenthavingaparticulargoal,RAGsourcesbecomepurpose-specificandcanbeconfiguredindependentlyforeachagentthatrequiresthemorwouldfindthemrelevant.

Caylent'ssolution,OmniLake,extendsthese

conceptsfurtherbyimplementingachain-based

executionmodelthatenablesdynamic,condition-

driveninformationretrievalandprocessing.BuiltonAWS,OmniLakeacceleratestime-to-valuebyunifyinginformationaccess,ensuringcontextpreservation

throughsourceannotation,andenablingcomplexlogicthroughvalidatedprocessingchains.

OmniLake'sserverlessarchitectureallows

forparallelexecutionofmultipleretrievaland

processingsteps,witheachstepinitiating

automaticallyasitsprerequisitesaremet.The

systemcombinesvectorsearch,knowledgegraph

processing,andconditionallogicintounifiedrequestchains,enablingsophisticatedmulti-stageretrievalsthatcanadaptbasedonintermediateresults.ThisapproachparticularlyshinesinenterprisecontextswhereinformationmustbegatheredandprocessedfromdiversesourcessuchasCRMsystems,wikis,anddocumentrepositories,witheachretrievalsteppotentiallyinfluencingsubsequentqueriesand

processingsteps.

OmniLake'sarchitecturealsomaintains

comprehensivedatalineagethroughouttheretrievalandgenerationprocess.EachpieceofAl-generatedcontentistrackedalongwithitssourcematerials,creatinganauditablechainofinformationflow.

ThiscapabilityisparticularlyvaluableinenterprisecontextswhereunderstandingtheprovenanceofAl-generatedcontentiscrucialforcompliance,

verification,andbuildingtrustinthesystem'soutputs.

CAYL三NT

2025OutlookonGenerativeAl|10

Cost&PerformanceOptimizationOperationalExcellenceHuman-AICollaboration

04.EvolvingSearchandDiscoveryTechnologiesc

AutomatedTuningandOptimization

Advancedsearchsystemsincorporaterefined

tuningmechanismsthatcontinuouslyoptimize

performance.Basedonobservedperformance

patterns,thesesystemsdynamicallyadjustchunksizes,refineretrievalthresholds,andoptimizequeryformulation.Implementingautomaticthreshold

adjustmentandresultrankingrefinementenablessystemstomaintainoptimalperformanceas

contentandusagepatternsevolve.

Performancemonitoringinvolvestrackingmultipledimensionsofsystemperformance,including

retrievalprecision,responserelevance,andcontextmaintenance.Thisholisticapproachtoperformance

measurementenablescontinuousoptimizationwhileensuringsystemreliabilityandaccuracy.

FutureDevelopments

Thefieldcontinuestoevolve,withseveralemergingtrendsshapingfuturecapabilities.Enhanced

contextualunderstandingandimprovedretrievalalgorithmsenablemoresophisticatedapplicationswhileadvancingperformanceoptimization

techniquesforbetterefficiency.Organizations

shouldprepareforthecontinuedevolutionof

evaluationframeworksandqualityassessment

approacheswhilemaintainingafocusonpracticalimplementationrequirements.

05.ProductsOverModels

Thebeginningof2025hasbeendominatedbythereleaseofDeepSeekR1,anopen-sourcemodel

thatcanachieveresultssimilartothoseofthetopmodelswithmuchcheaperinference.Whilethis

isgenerallyconsideredfantasticnewsforthose

buildinggenerativeAlapplications,theseadvancesmadesofar,alongwiththeincreasinglyadvancedmodelsreleasedin2024andexpectedthroughout2025,areindividuallytoosmalltoprovidesignificantbusinessvalue.Itisundeniablethatmodelsare

progressivelybecomingmoreintelligentand

cheaper,butatthispoint,nosinglemodelandnosinglechangewillbeasignificantdisruption.

Agoodexampleofthisistheothermajornewsfromearly2025:ChatGPT'sdeepresearchfeature.Itwasreleasedshortlyaftertheirownnewmodel,OpenAl03-mini,whichisimpressiveinitselfandalsomarksthestartofanewfamilyofmodels.However,the

deepresearchfeaturehadagreaterimpactthanthenewo3-minimodelbecauseitintroducedatrulynew

capability-awaytoperformwebsearchesacrossover30sources-ratherthansimplyofferingsimilarfunctionalitytoothermodelsatalowerpricepoint.

Theemergenceofsomanymodelsofferingdecentperformancehasturnedmodelsintoacommodity.Therankingsforbestperformanceandpriceare

constantlychanging.Whilemodelswillcontinuetoevolvethroughcumulativeimprovementsinthelongrun,tryingtokeepupwitheverynewreleasehas

becomeafutileandunproductiveeffort.

Ratherthanchasingeverynewrelease,we

recommendfocusingonthebiggerpicture-howthesemodelsdeliverrealbusinessvalue.Organizations

shouldprioritizetheapplicationlayer,comprisingthesoftwareandinterfacesthatenableusersandsystem-basedworkflowstointeractwithmodeloutputs.ThisapproachallowsbusinessestoleveragegenerativeAlsolutionsthatadapttoevolvingtechnologies,helpingthemsustainacompetitiveedge.

CAYL三NT

2025OutlookonGenerativeAl|11

Cost&PerformanceOptimizationOperationalExcellenceHuman-AICollaboration

06.DemocratizedAland

FederatedLearning

WhiledecentralizedapproachestoAldevelopmentanddeploymentcontinuetoevolve,thepractical

implementationofthesetechnologiesremains

firmlygroundedincentralizedcloudinfrastructure.Understandingtheappropriatebalancebetween

centralizedanddecentralizedapproacheshas

becomeakeypointfororganizationsplanningtheirAlstrategy,particularlyastheyaddressspecific

requirementsforprivacy,latency,andregulatorycompliance.

CurrentImplementationLandscape

TherealityofAldeploymentshowsaclearpatternofspecializationbetweencloudandedgecomputing.Mostmodeltrainingoperationsoccurincloud

environments,drivenbythespecializedhardware

requirementsandeconomicadvantagesofresourcepooling.Cloud-basedtrainingenablesorganizationstoleveragerobustinfrastructurewhilemaintainingcostefficiencyandoperationalflexibility.

Similarpatternsemergeininferenceoperations,wheremostworkloadscontinuetorunincloud

environments.Thiscentralizationenables

organizationstomaintainconsistentperformancewhileefficientlymanagingresourcesandensuringappropriategovernancecontrols.

Edgecomputingisthepreferredoptionforinferenceinspecificscenarioswhereprivacyconcernsor

networkconstraintsdemandlocalprocessing.ThemostprevalentconcernsaroundtheuseofdataandprivacyoccurinB2Ccontexts,especiallyforfreeAlservicesofferedbycompaniesthattraintheirownAlmodels.Networkconstraints,ontheotherhand,mayoccurinconsumer-owneddevicesormanufacturingenvironments.

PrivacyandRegulatoryCompliancePrivacyandregulatoryrequirementsoftendrivedecisionsaboutAldeploymentarchitecture.

Organizationsoperatinginregulatedindustries

mustimplementsophisticatedapproachestodataprotectionandcompliancemanagement.Successfulimplementationsconsidertheregionalityofdataandincorporatecomprehensiveauditcapabilitiesand

detailedmonitoringsystemsthatensureappropriatehandlingofsensitiveinformationwhilemaintainingoperationalefficiency.

Implementingprivacy-preservingtechniques

requirescarefulattentiontotechnicalarchitectureandoperationalprocedures.Organizations

typicallyachievecomplianceobjectivesthroughacombinationofdatalocalizationstrategies,

anonymizationofsensitivedata,andhighlysecureencryptionmecha

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論