江蘇省南京玄武區(qū)六校聯(lián)考2026屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
江蘇省南京玄武區(qū)六校聯(lián)考2026屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
江蘇省南京玄武區(qū)六校聯(lián)考2026屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
江蘇省南京玄武區(qū)六校聯(lián)考2026屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
江蘇省南京玄武區(qū)六校聯(lián)考2026屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省南京玄武區(qū)六校聯(lián)考2026屆九年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,為的直徑,點是弧的中點,過點作于點,延長交于點,若,,則的直徑長為()A.10 B.13 C.15 D.1.2.已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點,且∠EAF=45°,EC=1,將△ADE繞點A沿順時針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點B作BM∥AG,交AF于點M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是A.①②③ B.②③④ C.①③④ D.①②④3.如圖,有一圓錐形糧堆,其側(cè)面展開圖是半徑為6m的半圓,糧堆母線AC的中點P處有一老鼠正在偷吃糧食,此時,小貓正在B處,它要沿圓錐側(cè)面到達(dá)P處捕捉老鼠,則小貓所經(jīng)過的最短路程長為()A.3m B.m C.m D.4m4.如圖,已知四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,EC與⊙O相切于點C,∠ECB=35°,則∠D的度數(shù)是()A.145° B.125° C.90° D.80°5.關(guān)于x的一元二次方程x2+mx﹣1=0的根的情況為()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.不能確定6.如圖,□ABCD中,點E是邊AD的中點,EC交對角線BD于點F,則EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:27.一個不透明的袋子中裝有21個紅球和若干個白球,這些球除了顏色外都相同,若小英每次從袋子中隨機(jī)摸出一個球,記下顏色后再放回,經(jīng)過多次重復(fù)試驗,小英發(fā)現(xiàn)摸到紅球的頻率逐漸穩(wěn)定于1.4,則小英估計袋子中白球的個數(shù)約為()A.51 B.31 C.12 D.88.如圖,在邊長為4的菱形ABCD中,∠ABC=120°,對角線AC與BD相交于點O,以點O為圓心的圓與菱形ABCD的四邊都相切,則圖中陰影區(qū)域的面積為()A. B. C. D.9.某閉合電路中,電源的電壓為定值,電流I(A)與電阻R(Ω)成反比例.圖表示的是該電路中電流I與電阻R之間函數(shù)關(guān)系的圖象,則用電阻R表示電流I的函數(shù)解析式為()A. B. C. D.10.如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點的坐標(biāo)是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)11.己知的半徑為,點是線段的中點,當(dāng)時,點與的位置關(guān)系是()A.點在外 B.點在上 C.點在內(nèi) D.不能確定12.一個群里共有個好友,每個好友都分別給群里的其他好友發(fā)一條信息,共發(fā)信息1980條,則可列方程()A. B. C. D.二、填空題(每題4分,共24分)13.在一個不透明的袋子中裝有6個白球和若干個紅球,這些球除顏色外無其他差別.每次從袋子中隨機(jī)摸出一個球,記下顏色后再放回袋中,通過多次重復(fù)試驗發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.7附近,則袋子中紅球約有_____個.14.已知點與點,兩點都在反比例函數(shù)的圖象上,且<<,那么______________.(填“>”,“=”,“<”)15.如圖,在△ABC中,D、E分別是AB、AC上的點,且DE∥BC,若AD:AB=4:9,則S△ADE:S△ABC=.16.△ABC與△DEF的相似比為1:4,則△ABC與△DEF的周長比為.17.計算:=.18.如圖,在矩形ABCD中,AB=2,BC=4,點E、F分別在BC、CD上,若AE=,∠EAF=45°,則AF的長為_____.三、解答題(共78分)19.(8分)如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點為B.(1)求證:;(2)若AB=5,AD=8,求⊙O的半徑.20.(8分)如圖,△ABC的邊BC在x軸上,且∠ACB=90°.反比例函數(shù)y=(x>0)的圖象經(jīng)過AB邊的中點D,且與AC邊相交于點E,連接CD.已知BC=2OB,△BCD的面積為1.(1)求k的值;(2)若AE=BC,求點A的坐標(biāo).21.(8分)如圖,是的直徑,點在上,,F(xiàn)D切于點,連接并延長交于點,點為中點,連接并延長交于點,連接,交于點,連接.(1)求證:;(2)若的半徑為,求的長.22.(10分)(1)計算:(2)化簡:23.(10分)如圖①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求證:△ABD≌△ACE;(2)把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖②的位置,連接CD,點M、P、N分別為DE、DC、BC的中點,連接MN、PN、PM,判斷△PMN的形狀,并說明理由;(3)在(2)中,把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=6,請分別求出△PMN周長的最小值與最大值.24.(10分)在一個不透明的袋子中,裝有除顏色外都完全相同的4個紅球和若干個黃球.如果從袋中任意摸出一個球是紅球的概率為,那么袋中有黃球多少個?在的條件下如果從袋中摸出一個球記下顏色后放回,再摸出一個球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.25.(12分)已知二次函數(shù)中,函數(shù)與自變量的部分對應(yīng)值如下表:(1)求該二次函數(shù)的關(guān)系式;(2)若,兩點都在該函數(shù)的圖象上,試比較與的大?。?6.如圖一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于A(n,﹣1),B(,﹣4)兩點.(1)求反比例函數(shù)的解析式;(2)求一次函數(shù)的解析式;(3)若點C坐標(biāo)為(0,2),求△ABC的面積.

參考答案一、選擇題(每題4分,共48分)1、C【分析】連接OD交AC于點G,根據(jù)垂徑定理以及弦、弧之間的關(guān)系先得出DF=AC,再由垂徑定理及推論得出DE的長以及OD⊥AC,最后在Rt△DOE中,根據(jù)勾股定理列方程求得半徑r,從而求出結(jié)果.【詳解】解:連接OD交AC于點G,∵AB⊥DF,∴,DE=EF.又點是弧的中點,∴,OD⊥AC,∴,∴AC=DF=12,∴DE=2.設(shè)的半徑為r,∴OE=AO-AE=r-3,在Rt△ODE中,根據(jù)勾股定理得,OE2+DE2=OD2,∴(r-3)2+22=r2,解得r=.∴的直徑為3.故選:C.本題主要考查垂徑定理及其推論,弧、弦之間的關(guān)系以及勾股定理,解題的關(guān)鍵是通過作輔助線構(gòu)造直角三角形,是中考??碱}型.2、D【分析】利用全等三角形的性質(zhì)條件勾股定理求出的長,再利用相似三角形的性質(zhì)求出△BMF的面積即可【詳解】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE△AFG,∴EF=FG∵DE=BG∴EF=FG=BG+FB=DE+BF故①正確∵BC=CD=AD=4,EC=1∴DE=3,設(shè)BF=x,則EF=x+3,CF=4-x,在Rt△ECF中,(x+3)2=(4-x)2+12解得x=∴BF=,AF=故②正確,③錯誤,∵BM∥AG∴△FBM~△FGA∴∴S△MEF=,故④正確,故選D.本題考查旋轉(zhuǎn)變換、正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考選擇題中的壓軸題3、C【詳解】如圖,由題意得:AP=3,AB=6,∴在圓錐側(cè)面展開圖中故小貓經(jīng)過的最短距離是故選C.4、B【解析】試題解析:連接∵EC與相切,故選B.點睛:圓內(nèi)接四邊形的對角互補(bǔ).5、A【解析】計算出方程的判別式為△=m2+4,可知其大于0,可判斷出方程根的情況.【詳解】方程x2+mx﹣1=0的判別式為△=m2+4>0,所以該方程有兩個不相等的實數(shù)根,故選:A.此題主要考查根的判別式,解題的關(guān)鍵是求出方程根的判別式進(jìn)行判斷.6、D【分析】根據(jù)題意得出△DEF∽△BCF,進(jìn)而得出,利用點E是邊AD的中點得出答案即可.【詳解】解:∵?ABCD,故AD∥BC,∴△DEF∽△BCF,∴,∵點E是邊AD的中點,∴AE=DE=AD,∴.故選D.7、B【分析】設(shè)白球個數(shù)為個,白球數(shù)量袋中球的總數(shù)=1-14=1.6,求得【詳解】解:設(shè)白球個數(shù)為個,根據(jù)題意得,白球數(shù)量袋中球的總數(shù)=1-14=1.6,所以,解得故選B本題主要考查了用評率估計概率.8、C【分析】如圖,分別過O作OE⊥AB于E、OF⊥BC于F、OG⊥CD于G、OH⊥DA于H,則.分別求出上式中各量即可得到解答.【詳解】如圖,過O作OE⊥AB于E,由題意得:∠EOB=∠OAB=-∠ABO=-∠ABC=-=,AB=4∴OB=2,OA=2,OE=,BE=1,∠HOE=-=∴BD=2OB=4,AC=2OA=4,∴∴.故選C.本題考查圓的綜合應(yīng)用,在審清題意的基礎(chǔ)上把圖形分割成幾塊計算后再綜合是解題關(guān)鍵.9、C【解析】設(shè),那么點(3,2)滿足這個函數(shù)解析式,∴k=3×2=1.∴.故選C10、C【分析】分順時針旋轉(zhuǎn)和逆時針旋轉(zhuǎn)兩種情況討論解答即可.【詳解】解:∵點D(5,3)在邊AB上,∴BC=5,BD=5﹣3=2,①若順時針旋轉(zhuǎn),則點在x軸上,O=2,所以,(﹣2,0),②若逆時針旋轉(zhuǎn),則點到x軸的距離為10,到y(tǒng)軸的距離為2,所以,(2,10),綜上所述,點的坐標(biāo)為(2,10)或(﹣2,0).故選:C.本題考查了坐標(biāo)與圖形變化﹣旋轉(zhuǎn),正方形的性質(zhì),難點在于分情況討論.11、C【分析】首先根據(jù)題意求出OA,然后和半徑比較大小即可.【詳解】由已知,得OA=OP=4cm,∵的半徑為∴OA<5∴點在內(nèi)故答案為C.此題主要考查點和圓的位置關(guān)系,解題關(guān)鍵是找出點到圓心的距離.12、B【分析】每個好友都有一次發(fā)給QQ群其他好友消息的機(jī)會,即每兩個好友之間要互發(fā)一次消息;設(shè)有x個好友,每人發(fā)(x-1)條消息,則發(fā)消息共有x(x-1)條,再根據(jù)共發(fā)信息1980條,列出方程x(x-1)=1980.【詳解】解:設(shè)有x個好友,依題意,得:x(x-1)=1980.故選:B.本題考查了一元二次方程的應(yīng)用,根據(jù)題意設(shè)出合適的未知數(shù),再根據(jù)等量關(guān)系式列出方程是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、1【分析】設(shè)袋子中的紅球有x個,利用紅球在總數(shù)中所占比例得出與試驗比例應(yīng)該相等求出即可.【詳解】解:設(shè)袋子中的紅球有x個,根據(jù)題意,得:=0.7,解得:x=1,經(jīng)檢驗:x=1是分式方程的解,∴袋子中紅球約有1個,故答案為:1.此題主要考查概率公式的應(yīng)用,解題的關(guān)鍵是根據(jù)題意列式求解.14、<【分析】根據(jù)反比例函數(shù)圖象增減性解答即可.【詳解】∵反比例函數(shù)的圖象在每一個象限內(nèi)y隨x的增大而增大∴圖象上點與點,且0<<∴<故本題答案為:<.本題考查了反比例函數(shù)的圖象和性質(zhì),熟練掌握反比例函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.15、16:1【分析】由DE∥BC,證出△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2=,故答案為16:1.16、1:1.【解析】試題分析:∵△ABC與△DEF的相似比為1:1,∴△ABC與△DEF的周長比為1:1.故答案為1:1.考點:相似三角形的性質(zhì).17、1.【解析】試題分析:原式==9﹣1=1,故答案為1.考點:二次根式的混合運算.18、【解析】分析:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,則NF=x,再利用矩形的性質(zhì)和已知條件證明△AME∽△FNA,利用相似三角形的性質(zhì):對應(yīng)邊的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的長.詳解:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,∵四邊形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案為.點睛:本題考查了矩形的性質(zhì)、相似三角形的判斷和性質(zhì)以及勾股定理的運用,正確添加輔助線構(gòu)造相似三角形是解題的關(guān)鍵,三、解答題(共78分)19、(1)證明見解析;(2)⊙O的半徑為【分析】(1)連接OB,根據(jù)題意求證OB⊥AD,利用垂徑定理求證;(2)根據(jù)垂徑定理和勾股定理求解.【詳解】解:(1)連接OB,交AD于點E.∵BC是⊙O的切線,切點為B,∴OB⊥BC.∴∠OBC=90°∵四邊形ABCD是平行四邊形∴AD//BC∴∠OED=∠OBC=90°∴OE⊥AD又∵OE過圓心O∴(2)∵OE⊥AD,OE過圓心O∴AE=AD=4在Rt△ABE中,∠AEB=90°,BE==3,設(shè)⊙O的半徑為r,則OE=r-3在Rt△ABE中,∠OEA=90°,OE2+AE2=OA2即(r-3)2+42=r2∴r=∴⊙O的半徑為掌握垂徑定理和勾股定理是本題的解題關(guān)鍵.20、(1)k=12;(2)A(1,1).【解析】(1)連接OD,過D作DF⊥OC于F,依據(jù)∠ACB=90°,D為AB的中點,即可得到CD=AB=BD,進(jìn)而得出BC=2BF=2CF,依據(jù)BC=2OB,即可得到OB=BF=CF,進(jìn)而得出k=xy=OF?DF=BC?DF=2S△BCD=12;(2)設(shè)OB=m,則OF=2m,OC=3m,DF=,進(jìn)而得到E(3m,-2m),依據(jù)3m(-2m)=12,即可得到m=2,進(jìn)而得到A(1,1).【詳解】解:(1)如圖,連接OD,過D作DF⊥OC于F,∵∠ACB=90°,D為AB的中點,∴CD=AB=BD,∴BC=2BF=2CF,∵BC=2OB,∴OB=BF=CF,∴k=xy=OF?DF=BC?DF=2S△BCD=12;(2)設(shè)OB=m,則OF=2m,OC=3m,DF=,∵DF是△ABC的中位線,∴AC=2DF=,又∵AE=BC=2m,∴CE=AC-AE=-2m,∴E(3m,-2m),∵3m(-2m)=12,∴m2=4,又∵m>0,∴m=2,∴OC=1,AC=1,∴A(1,1).本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,解題時注意:反比例函數(shù)圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.21、(1)證明見解析;(2).【分析】(1)利用圓周角定理及,求得∠ABC=30°,利用切線的性質(zhì)求得∠D=30°,根據(jù)直角三角形30度角的性質(zhì)從而證出;(2)先證得△OAC為等邊三角形,求得的長,過點C作CM⊥AO于點M,證出△CME∽△FBE,求出,利用勾股定理求出,利用面積法即可求出.【詳解】(1)連接BC,∵AB是⊙O的直徑,,

∴∠ACB=90°,∠ABC=30°,∠BAC=60°,

∴,

∵BD切于點,

∴AB⊥DB,

∴∠D=90∠BAD=9060°=30°,∴AD=2AB,∴AD=4AC,∴;(2)連接OC,過點C作CM⊥AO于點M,∵∠BAC=60°,OA=OC,∴△OAC為等邊三角形,∴AC=OA=OC=2,OM=MA=1,∵CM⊥AO,∴OM=MA==1,在中,,,∴,∵點為中點,∴,∴,∵BF切于點,

∴AB⊥FB,

∴∠FBE=90,∵∠FEB=∠CEM,∴,∴,即,∴,在中,,,,∴,∵AB是⊙O的直徑

∴∠AGB=90°,∴BG⊥AF,∵,∴,∴本題是圓的綜合題,考查了切線的性質(zhì)、相似三角形的判定與性質(zhì)、圓周角定理、勾股定理以及三角形面積的計算,學(xué)會添加常用輔助線,熟練掌握圓周角定理,并能進(jìn)行推理計算是解決問題的關(guān)鍵.22、(1)1;(2)【分析】(1)根據(jù)實數(shù)的混合運算法則計算即可;(2)根據(jù)分式的運算法則計算即可.【詳解】解:(1)原式=2+=1;(2).本題考查了實數(shù)的混合運算,以及分式的混合運算,熟練掌握運算法則是解答本題的關(guān)鍵.23、(1)證明見解析;(2)△PMN是等邊三角形.理由見解析;(3)△PMN周長的最小值為3,最大值為1.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等邊三角形,利用三角形的中位線定理可得PM=CE,PM∥CE,PN=BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根據(jù)平行線的性質(zhì)可得∠DPM=∠DCE,∠PNC=∠DBC,因為∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等邊三角形;(3)由(2)知,△PMN是等邊三角形,PM=PN=BD,所以當(dāng)PM最大時,△PMN周長最大,當(dāng)點D在AB上時,BD最小,PM最小,求得此時BD的長,即可得△PMN周長的最小值;當(dāng)點D在BA延長線上時,BD最大,PM的值最大,此時求得△PMN周長的最大值即可.詳解:(1)因為∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等邊三角形.理由:∵點P,M分別是CD,DE的中點,∴PM=CE,PM∥CE,∵點N,M分別是BC,DE的中點,∴PN=BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等邊三角形.(3)由(2)知,△PMN是等邊三角形,PM=PN=BD,∴PM最大時,△PMN周長最大,∴點D在AB上時,BD最小,PM最小,∴BD=AB-AD=2,△PMN周長的最小值為3;點D在BA延長線上時,BD最大,PM最大,∴BD=AB+AD=10,△PMN周長的最大值為1.故答案為△PMN周長的最小值為3,最大值為1點睛:本題主要考查了全等三角形的判定及性質(zhì)、三角形的中位線定理、等邊三角形的判定,解決第(3)問,要明確點D在AB上時,BD最小,PM最小,△PMN周長的最??;點D在BA延長線上時,BD最大,PM最大,△PMN周長的最大值為1.24、(1)袋中有黃球有2個(2)【解析】設(shè)袋中黃球有x個,根據(jù)任意摸出一個球是紅球的概率為列出關(guān)于x的方程,解之可得;

列表得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】設(shè)袋中黃球有x個,根據(jù)題意,得:,解得,經(jīng)檢驗是原分式方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論