




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省青島市四區(qū)聯(lián)考2026屆數(shù)學九上期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.若△ABC與△DEF相似,相似比為2:3,則這兩個三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:42.下列說法正確的是().A.一顆質(zhì)地均勻的骰子已連續(xù)拋擲了2000次.其中,拋擲出5點的次數(shù)最多,則第2001次一定拋擲出5點.B.某種彩票中獎的概率是1%,因此買100張該種彩票一定會中獎C.天氣預報說:明天下雨的概率是50%,所以明天將有一半時間在下雨D.拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等3.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣364.拋物線y=ax2+bx+c與直線y=ax+c(a≠0)在同一直角坐標系中的圖象可能是()A. B.C. D.5.從地面豎直向上拋出一小球,小球的高度(單位:)與小球運動時間(單位:)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①小球在空中經(jīng)過的路程是;②小球拋出3秒后,速度越來越快;③小球拋出3秒時速度為0;④小球的高度時,.其中正確的是()A.①④ B.①② C.②③④ D.②③6.在同一個直角坐標系中,一次函數(shù)y=ax+c,與二次函數(shù)y=ax2+bx+c圖像大致為()A. B. C. D.7.羽毛球運動是一項非常受人喜歡的體育運動.某運動員在進行羽毛球訓練時,羽毛球飛行的高度與發(fā)球后球飛行的時間滿足關(guān)系式,則該運動員發(fā)球后時,羽毛球飛行的高度為()A. B. C. D.8.如圖,拋物線的對稱軸為,且過點,有下列結(jié)論:①>0;②>0;③;④>0.其中正確的結(jié)論是()A.①③ B.①④ C.①② D.②④9.在△ABC中,∠C=90°,tanA=,那么sinA的值是()A. B. C. D.10.下列圖形,是軸對稱圖形,但不是中心對稱圖形的是()A. B. C. D.11.今年元旦期間,某種女服裝連續(xù)兩次降價處理,由每件200元調(diào)至72元,設(shè)平均每次的降價百分率為,則得方程()A. B.C. D.12.如圖,四邊形ABCD內(nèi)接于⊙O,已知∠A=80°,則∠C的度數(shù)是()A.40° B.80° C.100° D.120°二、填空題(每題4分,共24分)13.如圖,中,,,,是上一個動點,以為直徑的⊙交于,則線段長的最小值是_________.14.將二次函數(shù)y=-2(x-1)2+3的圖象關(guān)于原點作對稱變換,則對稱后得到的二次函數(shù)的解析式為____________.15.計算__________.16.慶“元旦”,市工會組織籃球比賽,賽制為單循環(huán)形式(每兩隊之間都賽一場),共進行了45場比賽,求這次有多少隊參加比賽?若設(shè)這次有x隊參加比賽,則根據(jù)題意可列方程為_____.17.如圖,直線與軸交于點,與軸交于點,點在軸的正半軸上,,過點作軸交直線于點,若反比例函數(shù)的圖象經(jīng)過點,則的值為_________________.18.繞著A點旋轉(zhuǎn)后得到,若,,則旋轉(zhuǎn)角等于_____.三、解答題(共78分)19.(8分)某學校開展了主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學生對垃圾分類知識的掌握情況,該校環(huán)保社團成員在校園內(nèi)隨機抽取了部分學生進行問卷調(diào)查將他們的得分按優(yōu)秀、良好、合格、不合格四個等級進行統(tǒng)計,并繪制了如下不完整的統(tǒng)計表和條形統(tǒng)計圖.請根據(jù)圖表信息,解答下列問題:本次調(diào)查隨機抽取了____名學生:表中;補全條形統(tǒng)計圖:若全校有名學生,請你估計該校掌握垃圾分類知識達到“優(yōu)秀"和“良好”等級的學生共有多少人20.(8分)如圖,AB是?⊙O的直徑,點C是??⊙O上一點,AC平分∠DAB,直線DC與AB的延長線相交于點P,AD與PC延長線垂直,垂足為點D,CE平分∠ACB,交AB于點F,交??⊙O于點E.(1)求證:PC與⊙O相切;(2)求證:PC=PF;(3)若AC=8,tan∠ABC=,求線段BE的長.21.(8分)某商場銷售一種商品,若將50件該商品按標價打八折銷售,比按原標價銷售這些商品少獲利200元.求該商品的標價為多少元;已知該商品的進價為每件12元,根據(jù)市場調(diào)查:若按中標價銷售,該商場每天銷售100件;每漲1元,每天要少賣5件那么漲價后要使該商品每天的銷售利潤最大,應(yīng)將銷售價格定為每件多少元?最大利潤是多少?22.(10分)小哲的姑媽經(jīng)營一家花店,隨著越來越多的人喜愛“多肉植物”,姑媽也打算銷售“多肉植物”.小哲幫助姑媽針對某種“多肉植物”做了市場調(diào)查后,繪制了以下兩張圖表:(1)如果在三月份出售這種植物,單株獲利多少元;(2)請你運用所學知識,幫助姑媽求出在哪個月銷售這種多肉植物,單株獲利最大?(提示:單株獲利=單株售價﹣單株成本)23.(10分)如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)(x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AD=1.(1)求反比例函數(shù)的解析式;(2)求cos∠OAB的值;(1)求經(jīng)過C、D兩點的一次函數(shù)解析式.24.(10分)(1)問題發(fā)現(xiàn):如圖1,在等腰直角三角形中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接,則的面積為__________;(請用含的式子表示的面積;提示:過點作邊上的高)(2)類比探究:如圖2,在一般的中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接.(1)中的結(jié)論是否成立,若成立,請說明理由.(3)拓展應(yīng)用:如圖3,在等腰三角形中,,將邊繞點順時針旋轉(zhuǎn)90°得到線段,連接.試直接用含的式子表示的面積.(不寫探究過程)25.(12分)某校為了解本校九年級男生“引體向上”項目的訓練情況,隨機抽取該年級部分男生進行了一次測試(滿分15分,成績均記為整數(shù)分),并按測試成績(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:(1)本次抽取樣本容量為,扇形統(tǒng)計圖中A類所對的圓心角是度;(2)請補全統(tǒng)計圖;(3)若該校九年級男生有300名,請估計該校九年級男生“引體向上”項目成績?yōu)镃類的有多少名?26.如圖,BD為⊙O的直徑,點A是劣弧BC的中點,AD交BC于點E,連結(jié)AB.(1)求證:AB2=AE·AD;(2)若AE=2,ED=4,求圖中陰影的面積.
參考答案一、選擇題(每題4分,共48分)1、C【分析】由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個三角形的面積比為4:1.故選C.此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.2、D【解析】概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生.【詳解】A.
是隨機事件,錯誤;
B.
中獎的概率是1%,買100張該種彩票不一定會中獎,錯誤;
C.
明天下雨的概率是50%,是說明天下雨的可能性是50%,而不是明天將有一半時間在下雨,錯誤;
D.
正確。
故選D.本題考查概率的意義,解題的關(guān)鍵是掌握概率的意義.3、B【解析】解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過點B,∴﹣4=,得k=﹣32.故選B.本題主要考查菱形的性質(zhì)和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關(guān)鍵在于根據(jù)A點坐標求得OA的長,再根據(jù)菱形的性質(zhì)求得B點坐標,然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.4、D【分析】可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負,再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.【詳解】A.一次函數(shù)y=ax+c與y軸交點應(yīng)為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點也應(yīng)為(0,c),圖象不符合,故本選項錯誤;B.由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C.由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D.由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選:D.本題考查了拋物線和直線的性質(zhì),用假設(shè)法來解答這種數(shù)形結(jié)合題是一種很好的方法.5、D【分析】根據(jù)函數(shù)的圖象中的信息判斷即可.【詳解】①由圖象知小球在空中達到的最大高度是;故①錯誤;②小球拋出3秒后,速度越來越快;故②正確;③小球拋出3秒時達到最高點即速度為0;故③正確;④設(shè)函數(shù)解析式為:,把代入得,解得,∴函數(shù)解析式為,把代入解析式得,,解得:或,∴小球的高度時,或,故④錯誤;故選D.本題考查了二次函數(shù)的應(yīng)用,解此題的關(guān)鍵是正確的理解題意6、D【分析】先分析一次函數(shù),得到a、c的取值范圍后,對照二次函數(shù)的相關(guān)性質(zhì)是否一致,可得答案.【詳解】解:依次分析選項可得:
A、分析一次函數(shù)y=ax+c可得,a>0,c>0,二次函數(shù)y=ax2+bx+c開口應(yīng)向上;與圖不符.
B、分析一次函數(shù)y=ax+c可得,a<0,c>0,二次函數(shù)y=ax2+bx+c開口應(yīng)向下,在y軸上與一次函數(shù)交于同一點;與圖不符.
C、分析一次函數(shù)y=ax+c可得,a<0,c<0,二次函數(shù)y=ax2+bx+c開口應(yīng)向下;與圖不符.
D、一次函數(shù)y=ax+c和二次函數(shù)y=ax2+bx+c常數(shù)項相同,在y軸上應(yīng)交于同一點;分析一次函數(shù)y=ax+c可得a<0,二次函數(shù)y=ax2+bx+c開口向下;符合題意.
故選:D.本題考查一次函數(shù)、二次函數(shù)的系數(shù)與圖象的關(guān)系,有一定難度,注意分析簡單的函數(shù),得到信息后對照復雜的函數(shù).7、C【分析】根據(jù)函數(shù)關(guān)系式,求出t=1時的h的值即可.【詳解】t=1s時,h=-1+2+1.5=2.5故選C.本題考查了二次函數(shù)的應(yīng)用,知道t=1時滿足函數(shù)關(guān)系式是解題的關(guān)鍵.8、C【分析】根據(jù)拋物線的開口方向、對稱軸、與y軸的交點判定系數(shù)符號及運用一些特殊點解答問題.【詳解】由拋物線的開口向下可得:a<0,
根據(jù)拋物線的對稱軸在y軸左邊可得:a,b同號,所以b<0,
根據(jù)拋物線與y軸的交點在正半軸可得:c>0,
∴abc>0,故①正確;
直線x=-1是拋物線y=ax2+bx+c(a≠0)的對稱軸,所以-=-1,可得b=2a,
a-2b+4c=a-4a+4c=-3a+4c,
∵a<0,
∴-3a>0,
∴-3a+4c>0,
即a-2b+4c>0,故②正確;
∵b=2a,a+b+c<0,
∴2a+b≠0,故③錯誤;
∵b=2a,a+b+c<0,
∴b+b+c<0,
即3b+2c<0,故④錯誤;
故選:C.此題考查二次函數(shù)圖象與系數(shù)的關(guān)系,掌握二次函數(shù)的性質(zhì)、靈活運用數(shù)形結(jié)合思想是解題的關(guān)鍵,解答時,要熟練運用拋物線的對稱性和拋物線上的點的坐標滿足拋物線的解析式.9、C【分析】根據(jù)正切函數(shù)的定義,可得BC,AC的關(guān)系,根據(jù)勾股定理,可得AB的長,根據(jù)正弦函數(shù)的定義,可得答案.【詳解】tanA==,BC=x,AC=3x,由勾股定理,得AB=x,sinA==,故選:C.本題考查了同角三角函數(shù)的關(guān)系,利用正切函數(shù)的定義得出BC=x,AC=3x是解題關(guān)鍵.10、A【解析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,符合題意;B.不是軸對稱圖形,是中心對稱圖形,不符合題意;C.是軸對稱圖形,是中心對稱圖形,不符合題意;D.是軸對稱圖形,是中心對稱圖形,不符合題意;故選:A.本題考查的知識點是識別軸對稱圖形與中心對稱圖形,需要注意的是軸對稱圖形是關(guān)于對稱軸成軸對稱;中心對稱圖形是關(guān)于某個點成中心對稱.11、C【分析】設(shè)調(diào)價百分率為x,根據(jù)售價從原來每件200元經(jīng)兩次調(diào)價后調(diào)至每件72元,可列方程.【詳解】解:設(shè)調(diào)價百分率為x,則:故選:C.本題考查一元二次方程的應(yīng)用,關(guān)鍵設(shè)出兩次降價的百分率,根據(jù)調(diào)價前后的價格列方程求解.12、C【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C+∠A=180°,代入求出即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,
∴∠C+∠A=180°,
∵∠A=80°,
∴∠C=100°,
故選:C.本題考查了圓內(nèi)接四邊形的性質(zhì)的應(yīng)用.熟記圓內(nèi)接四邊形對角互補是解決此題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】連接AE,可得∠AED=∠BEA=90°,從而知點E在以AB為直徑的⊙Q上,繼而知點Q、E、C三點共線時CE最小,根據(jù)勾股定理求得QC的長,即可得線段CE的最小值.【詳解】解:如圖,連接AE,則∠AED=∠BEA=90°(直徑所對的圓周角等于90°),
∴點E在以AB為直徑的⊙Q上,
∵AB=4,
∴QA=QB=2,
當點Q、E、C三點共線時,QE+CE=CQ(最短),
而QE長度不變?yōu)?,故此時CE最小,
∵AC=5,
,
∴,
故答案為:.本題考查了圓周角定理和勾股定理的綜合應(yīng)用,解決本題的關(guān)鍵是確定E點運動的軌跡,從而把問題轉(zhuǎn)化為圓外一點到圓上一點的最短距離問題.14、y=2(x+1)2-3【分析】根據(jù)關(guān)于原點對稱點的特點,可得答案.【詳解】解:y=?2(x?1)2+3的頂點坐標為(1,3),故變換后的拋物線為y=2(x+1)2?3,故答案為y=2(x+1)2?3本題考查了二次函數(shù)圖象與幾何變換,拋物線關(guān)于原點對稱變換后只是開口方向改變,頂點關(guān)于原點對稱,而開口大小并沒有改變.15、【分析】先把特殊角的三角函數(shù)值代入原式,再計算即得答案.【詳解】解:原式=.故答案為:.本題考查了特殊角的三角函數(shù)值,屬于基礎(chǔ)題型,熟記特殊角的三角函數(shù)值、正確計算是關(guān)鍵.16、=45【分析】設(shè)這次有x隊參加比賽,由于賽制為單循環(huán)形式(每兩隊之間都賽一場),則此次比賽的總場數(shù)為:場.根據(jù)題意可知:此次比賽的總場數(shù)=45場,依此等量關(guān)系列出方程.【詳解】解:設(shè)這次有x隊參加比賽,則此次比賽的總場數(shù)為場,根據(jù)題意列出方程得:=45,故答案是:.考查了由實際問題抽象出一元二次方程,本題的關(guān)鍵在于理解清楚題意,找出合適的等量關(guān)系,列出方程,再求解.需注意賽制是“單循環(huán)形式”,需使兩兩之間比賽的總場數(shù)除以1.17、1【解析】先求出直線y=x+2與坐標軸的交點坐標,再由三角形的中位線定理求出CD,得到C點坐標.【詳解】解:令x=0,得y=x+2=0+2=2,
∴B(0,2),
∴OB=2,
令y=0,得0=x+2,解得,x=-6,
∴A(-6,0),
∴OA=OD=6,
∵OB∥CD,
∴CD=2OB=4,
∴C(6,4),
把c(6,4)代入y=(k≠0)中,得k=1,
故答案為:1.本題考查了一次函數(shù)與反比例函數(shù)的綜合,需要掌握求函數(shù)圖象與坐標軸的交點坐標方法,三角形的中位線定理,待定系數(shù)法.本題的關(guān)鍵是求出C點坐標.18、50°或210°【分析】首先根據(jù)題意作圖,然后由∠BAC′=130°,∠BAC=80°,即可求得答案.【詳解】解:∵∠BAC′=130°,∠BAC=80°,
∴如圖1,∠CAC′=∠BAC′-∠BAC=50°,
如圖2,∠CAC′=∠BAC′+∠BAC=210°.
∴旋轉(zhuǎn)角等于50°或210°.
故答案為:50°或210°.本題考查了旋轉(zhuǎn)的性質(zhì).注意掌握數(shù)形結(jié)合思想與分類討論思想的應(yīng)用.三、解答題(共78分)19、(1)50,20,0.12;(2)詳見解析;(3)1.【分析】(1)根據(jù)總數(shù)×頻率=頻數(shù),即可得到答案;(2)根據(jù)統(tǒng)計表的數(shù)據(jù),即可畫出條形統(tǒng)計圖;(3)根據(jù)全???cè)藬?shù)×達到“優(yōu)秀"和“良好”等級的學生的百分比,即可得到答案.【詳解】本次調(diào)查隨機抽取了名學生,.故答案為:;補全條形統(tǒng)計圖如圖所示:(人),答:該校掌握垃圾分類知識達到“優(yōu)秀"和“良好”等級的學生共有1多少人.本題主要考查頻數(shù)統(tǒng)計表和條形統(tǒng)計圖,掌握統(tǒng)計表和條形統(tǒng)計圖的特征,是解題的關(guān)鍵.20、(1)見解析;(2)見解析;(3)BE=5.【分析】(1)連接OC,根據(jù)角平分線的定義、等腰三角形的性質(zhì)得到∠DAC=∠OCA,得到OC∥AD,根據(jù)平行線的性質(zhì)得到OC⊥PD,根據(jù)切線的判定定理證明結(jié)論;(2)根據(jù)圓周角定理、三角形的外角的性質(zhì)證明∠PFC=∠PCF,根據(jù)等腰三角形的判定定理證明;(3)連接AE,根據(jù)正切的定義求出BC,根據(jù)勾股定理求出AB,根據(jù)等腰直角三角形的性質(zhì)計算即可.【詳解】(1)證明:連接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OA=OC,∴∠OCA=∠CAB,∴∠DAC=∠OCA,∴OC∥AD,又AD⊥PD,∴OC⊥PD,∴PC與⊙O相切;(2)證明:∵CE平分∠ACB,∴∠ACE=∠BCE,∴,∴∠ABE=∠ECB,∵OC=OB,∴∠OCB=∠OBC,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∵∠BCP+∠OCB=90°,∴∠BCP=∠BAC,∵∠BAC=∠BEC,∴∠BCP=∠BEC,∵∠PFC=∠BEC+∠ABE,∠PCF=∠ECB+∠BCP,∴∠PFC=∠PCF,∴PC=PF;(3)解:連接AE,在Rt△ACB中,tan∠ABC=,AC=8,∴BC=6,由勾股定理得,AB=,∵,∴AE=BE,則△AEB為等腰直角三角形,∴BE=AB=5.本題考查的是角平分線的定義、等腰三角形的性質(zhì)和判定,切線的判定及勾股定理、銳角三角函數(shù).熟練運用這些性質(zhì)是解題的關(guān)鍵.21、(1)20;(2)26,980.【分析】(1)設(shè)該商品的標價為x元,根據(jù)按標價的八折銷售該商品50件比按標價銷售該商品50件所獲得的利潤少200元,列方程求解;(2)設(shè)該商品每天的銷售利潤為y元,銷售價格定為每件x元,列出y關(guān)于x的函數(shù)解析式,求出頂點坐標即可得解.【詳解】解:設(shè)該商品的標價為a元,由題意可得:,解得:;答:該商品的標價為20元;設(shè)該商品每天的銷售利潤為y元,銷售價格定為每件x元,由題意可得:;,所以銷售單價為26元時,商品的銷售利潤最大,最大利潤是980元.本題考查了一元一次方程的應(yīng)用和運用二次函數(shù)解決實際問題.22、(1)每株獲利為1元;(2)5月銷售這種多肉植物,單株獲利最大.【解析】(1)從左圖看,3月份售價為5元,從右圖看,3月份的成本為4元,則每株獲利為5﹣4=1(元),即可求解;(2)點(3,5)、(6,3)為一次函數(shù)上的點,求得直線的表達式為:y1=﹣x+7;同理,拋物線的表達式為:y2=(x﹣6)2+1,故:y1﹣y2=﹣x+7-(x﹣6)2﹣1=﹣(x﹣5)2+,即可求解.【詳解】(1)從左圖看,3月份售價為5元,從右圖看,3月份的成本為4元,則每株獲利為5﹣4=1(元),(2)設(shè)直線的表達式為:y1=kx+b(k≠0),把點(3,5)、(6,3)代入上式得:,解得:,∴直線的表達式為:y1=﹣x+7;設(shè):拋物線的表達式為:y2=a(x﹣m)2+n,∵頂點為(6,1),則函數(shù)表達式為:y2=a(x﹣6)2+1,把點(3,4)代入上式得:4=a(3﹣6)2+1,解得:a=,則拋物線的表達式為:y2=(x﹣6)2+1,∴y1﹣y2=﹣x+7-(x﹣6)2﹣1=﹣(x﹣5)2+,∵a=﹣<0,∴x=5時,函數(shù)取得最大值,故:5月銷售這種多肉植物,單株獲利最大.本題考查了二次函數(shù)的性質(zhì)在實際生活中的應(yīng)用.最大利潤的問題常利函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結(jié)合實際選擇最優(yōu)方案.23、(1);(2);(1).【解析】試題分析:(1)設(shè)點D的坐標為(2,m)(m>0),則點A的坐標為(2,1+m),由點A的坐標表示出點C的坐標,根據(jù)C、D點在反比例函數(shù)圖象上結(jié)合反比例函數(shù)圖象上點的坐標特征即可得出關(guān)于k、m的二元一次方程,解方程即可得出結(jié)論;(2)由m的值,可找出點A的坐標,由此即可得出線段OB、AB的長度,通過解直角三角形即可得出結(jié)論;(1)由m的值,可找出點C、D的坐標,設(shè)出過點C、D的一次函數(shù)的解析式為y=ax+b,由點C、D的坐標利用待定系數(shù)法即可得出結(jié)論.試題解析:(1)設(shè)點D的坐標為(2,m)(m>0),則點A的坐標為(2,1+m),∵點C為線段AO的中點,∴點C的坐標為(2,).∵點C、點D均在反比例函數(shù)的函數(shù)圖象上,∴,解得:,∴反比例函數(shù)的解析式為.(2)∵m=1,∴點A的坐標為(2,2),∴OB=2,AB=2.在Rt△ABO中,OB=2,AB=2,∠ABO=90°,∴OA==,cos∠OAB==.(1))∵m=1,∴點C的坐標為(2,2),點D的坐標為(2,1).設(shè)經(jīng)過點C、D的一次函數(shù)的解析式為y=ax+b,則有,解得:,∴經(jīng)過C、D兩點的一次函數(shù)解析式為.考點:反比例函數(shù)與一次函數(shù)的交點問題;反比例函數(shù)圖象上點的坐標特征.24、(1);(2)成立,理由見解析;(3)【分析】(1)如圖1,過點D作BC的垂線,與BC的延長線交于點E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有DE=BC=a進而由三角形的面積公式得出結(jié)論;
(2)如圖2,過點D作BC的垂線,與BC的延長線交于點E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有.DE=BC=a進而由三角形的面積公式得出結(jié)論;
(3)如圖3,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,由等腰三角形的性質(zhì)可以得出BF=BC,由條件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面積公式就可以得出結(jié)論.【詳解】解:(1)如圖1,過點D作DE⊥CB交CB的延長線于E,
∴∠BED=∠ACB=90°,
由旋轉(zhuǎn)知,AB=BD,∠ABD=90°,
∴∠ABC+∠DBE=90°,
∵∠A+∠ABC=90°,
∴∠A=∠DBE,
在△ABC和△BDE中,
,
∴△ABC≌△BDE(AAS)
∴BC=DE=a.
∵S△BCD=BC?DE=
故答案為(2)(1)中結(jié)論仍然成立,理由:如圖,過點作邊上的高,在中,∵,由旋轉(zhuǎn)可知:,∴,∴,又∵,∴,∴,(3).如圖3,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,
∴∠AFB=∠E=90°,BF=BC=a.
∴∠FAB+∠ABF=90°
∵∠ABD=90°,
∴∠ABF+∠DBE=90°,
∴∠FAB=∠EBD
∵線段BD是由線段AB旋轉(zhuǎn)得到的,
∴AB=BD
在△AFB和△BED中,
,
∴△AFB≌△BED(A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年煤礦回采工藝試題及答案
- 現(xiàn)代物流產(chǎn)業(yè)園項目社會穩(wěn)定風險評估報告
- 社交禮儀知識關(guān)鍵要點試題及答案
- 2025年水利水電工程安全生產(chǎn)基礎(chǔ)知識試題及答案
- 20萬千瓦風電工程社會穩(wěn)定風險評估報告
- 2025財會類專技崗考試真題及答案
- 2025病理學考試真題及答案
- 2025殯儀協(xié)會考試真題及答案
- 游泳教練基本考試題
- 初中美術(shù)考試試題及答案
- 導管相關(guān)并發(fā)癥的預防及處理
- 鐵路信號基礎(chǔ)繼電器詳解
- 外墻真石漆工程安全文明施工保證措施及環(huán)境保護體系和保證措施
- 等離子點火系統(tǒng)及暖風器系統(tǒng)培訓
- 2024年金華市中心醫(yī)院醫(yī)療集團(醫(yī)學中心)招聘筆試真題
- 新課標體育與健康教案集(水平四)
- 混凝土結(jié)構(gòu)設(shè)計原理(第五版)課后習題答案
- 中國非遺文化魚燈介紹介紹2
- 金華市金東區(qū)合同制教師管理辦法
- 5.申恒梅-環(huán)境空氣自動監(jiān)測數(shù)據(jù)審核、評價及異常數(shù)據(jù)判定
- 智能安防系統(tǒng)維護與保養(yǎng)手冊
評論
0/150
提交評論