江蘇省無錫市天一實驗學(xué)校2026屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
江蘇省無錫市天一實驗學(xué)校2026屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
江蘇省無錫市天一實驗學(xué)校2026屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
江蘇省無錫市天一實驗學(xué)校2026屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
江蘇省無錫市天一實驗學(xué)校2026屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省無錫市天一實驗學(xué)校2026屆數(shù)學(xué)九年級第一學(xué)期期末統(tǒng)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.已知Rt△ABC中,∠C=90o,AC=4,BC=6,那么下列各式中,正確的是()A.sinA= B.cosA= C.tanA= D.tanB=2.對于題目“拋物線l1:(﹣1<x≤2)與直線l2:y=m(m為整數(shù))只有一個交點,確定m的值”;甲的結(jié)果是m=1或m=2;乙的結(jié)果是m=4,則()A.只有甲的結(jié)果正確B.只有乙的結(jié)果正確C.甲、乙的結(jié)果合起來才正確D.甲、乙的結(jié)果合起來也不正確3.如圖,是的直徑,點,在上,若,則的度數(shù)為()A. B. C. D.4.四張背面完全相同的卡片,正面分別畫有平行四邊形、菱形、等腰梯形、圓,現(xiàn)從中任意抽取一張,卡片上所畫圖形恰好是軸對稱圖形的概率為()A.1 B. C. D.5.一元二次方程的根的情況為()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.只有一個實數(shù)根6.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是()A.2 B.3 C.4 D.57.的值等于()A. B. C. D.18.如圖,AB是半圓的直徑,點D是的中點,∠ABC=50°,則∠DAB等于()A.65° B.60° C.55° D.50°9.如圖,在矩形AOBC中,點A的坐標為(-2,1),點C的縱坐標是4,則B,C兩點的坐標分別是()A.(,),(,) B.(,),(,)C.(,),(,) D.(,),(,)10.如圖,AB是⊙O的弦(AB不是直徑),以點A為圓心,以AB長為半徑畫弧交⊙O于點C,連結(jié)AC、BC、OB、OC.若∠ABC=65°,則∠BOC的度數(shù)是()A.50° B.65° C.100° D.130°二、填空題(每小題3分,共24分)11.一元二次方程x(x﹣3)=3﹣x的根是____.12.如圖,點把弧分成三等分,是⊙的切線,過點分別作半徑的垂線段,已知,,則圖中陰影部分的面積是________.13.從一副撲克牌中的13張黑桃牌中隨機抽取一張,它是王牌的概率為____.14.一元二次方程(x﹣5)(x﹣7)=0的解為_____.15.從﹣2,﹣1,1,2四個數(shù)中,隨機抽取兩個數(shù)相乘,積為大于﹣4小于2的概率是_____.16.如圖,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,點D是斜邊BC上的一個動點,過點D分別作DM⊥AB于點M,DN⊥AC于點N,連接MN,則線段MN的最小值為_____.17.拋物線y=x2+2x+3的頂點坐標是_____________.18.已知P(﹣1,y1),Q(﹣1,y1)分別是反比例函數(shù)y=﹣圖象上的兩點,則y1_____y1.(用“>”,“<”或“=”填空)三、解答題(共66分)19.(10分)如圖1,內(nèi)接于,AD是直徑,的平分線交BD于H,交于點C,連接DC并延長,交AB的延長線于點E.(1)求證:;(2)若,求的值(3)如圖2,連接CB并延長,交DA的延長線于點F,若,求的面積.20.(6分)如圖所示,已知二次函數(shù)y=-x2+bx+c的圖像與x軸的交點為點A(3,0)和點B,與y軸交于點C(0,3),連接AC.(1)求這個二次函數(shù)的解析式;(2)在(1)中位于第一象限內(nèi)的拋物線上是否存在點D,使得△ACD的面積最大?若存在,求出點D的坐標及△ACD面積的最大值,若不存在,請說明理由.(3)在拋物線上是否存在點E,使得△ACE是以AC為直角邊的直角三角形如果存在,請直接寫出點E的坐標即可;如果不存在,請說明理由.21.(6分)如圖,在中,于點.若,求的值.22.(8分)如圖,在等腰直角三角形MNC中,CN=MN=,將△MNC繞點C順時針旋轉(zhuǎn)60°,得到△ABC,連接AM,BM,BM交AC于點O.(1)∠NCO的度數(shù)為________;(2)求證:△CAM為等邊三角形;(3)連接AN,求線段AN的長.23.(8分)我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為40元,若銷售價為60元,每天可售出20件,為迎接“雙十一”,專賣店決定采取適當?shù)慕祪r措施,以擴大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件設(shè)每件童裝降價x元時,平均每天可盈利y元.寫出y與x的函數(shù)關(guān)系式;當該專賣店每件童裝降價多少元時,平均每天盈利400元?該專賣店要想平均每天盈利600元,可能嗎?請說明理由.24.(8分)定義:有一組鄰邊相等的凸四邊形叫做“準菱形”,利用該定義完成以下各題:(1)理解:如圖1,在四邊形ABCD中,若__________(填一種情況),則四邊形ABCD是“準菱形”;(2)應(yīng)用:證明:對角線相等且互相平分的“準菱形”是正方形;(請畫出圖形,寫出已知,求證并證明)(3)拓展:如圖2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,將Rt△ABC沿∠ABC的平分線BP方向平移得到△DEF,連接AD,BF,若平移后的四邊形ABFD是“準菱形”,求線段BE的長.25.(10分)如圖,某科技物展覽大廳有A、B兩個入口,C、D、E三個出口.小昀任選一個入口進入展覽大廳,參觀結(jié)束后任選一個出口離開.(1)若小昀已進入展覽大廳,求他選擇從出口C離開的概率.(2)求小昀選擇從入口A進入,從出口E離開的概率.(請用列表或畫樹狀圖求解)26.(10分)為了維護國家主權(quán),海軍艦隊對我國領(lǐng)海例行巡邏.如圖,正在執(zhí)行巡航任務(wù)的艦隊以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔在北偏東30°方向上.(1)求∠APB的度數(shù).(2)已知在燈塔P的周圍40海里范圍內(nèi)有暗礁,問艦隊繼續(xù)向正東方向航行是否安全?

參考答案一、選擇題(每小題3分,共30分)1、D【分析】本題可以利用銳角三角函數(shù)的定義以及勾股定理分別求解,再進行判斷即可.【詳解】∵∠C=90°,BC=6,AC=4,∴AB=,A、sinA=,故此選項錯誤;B、cosA=,故此選項錯誤;C、tanA=,故此選項錯誤;D、tanB=,故此選項正確.故選:D.

此題主要考查了銳角三角函數(shù)的定義以及勾股定理,熟練應(yīng)用銳角三角函數(shù)的定義是解決問題的關(guān)鍵.2、C【分析】畫出拋物線l1:y=﹣(x﹣1)2+4(﹣1<x≤2)的圖象,根據(jù)圖象即可判斷.【詳解】解:由拋物線l1:y=﹣(x﹣1)2+4(﹣1<x≤2)可知拋物線開口向下,對稱軸為直線x=1,頂點為(1,4),如圖所示:∵m為整數(shù),由圖象可知,當m=1或m=2或m=4時,拋物線l1:y=﹣(x﹣1)2+4(﹣1<x≤2)與直線l2:y=m(m為整數(shù))只有一個交點,∴甲、乙的結(jié)果合在一起正確,故選:C.本題考查了二次函數(shù)圖象與一次函數(shù)圖象的交點問題,作出函數(shù)的圖象是解題的關(guān)鍵.3、C【分析】先根據(jù)圓周角定理求出∠ACD的度數(shù),再由直角三角形的性質(zhì)可得出結(jié)論.【詳解】∵,∴∠ABD=∠ACD=40°,∵AB是⊙O的直徑,

∴∠ACB=90°.

∴∠BCD=∠ACB-∠ACD=90°-40°=50°.

故選:C.本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關(guān)鍵.4、B【解析】以上圖形中軸對稱圖形有菱形、等腰梯形、圓,所以概率為3÷4=.故選B5、B【分析】直接利用判別式△判斷即可.【詳解】∵△=∴一元二次方程有兩個不等的實根故選:B.本題考查一元二次方程根的情況,注意在求解判別式△時,正負號不要弄錯了.6、C【詳解】解:①正確.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設(shè)BG=FG=x,則CG=6﹣x.在直角△ECG中,根據(jù)勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.∴BG=1=6﹣1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④正確.理由:∵S△GCE=GC?CE=×1×4=6,∵S△AFE=AF?EF=×6×2=6,∴S△EGC=S△AFE;⑤錯誤.∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠GAF=45°,∴∠AGB+∠AED=180°﹣∠GAF=115°.故選C.本題考查翻折變換(折疊問題);全等三角形的判定與性質(zhì);正方形的性質(zhì);勾股定理.7、B【分析】根據(jù)sin60°以及tan45°的值求解即可.【詳解】sin60°=,tan45°=1,所以sin60°+tan45°=.故選B.本題主要考查特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.8、A【分析】連結(jié)BD,由于點D是的中點,即,根據(jù)圓周角定理得∠ABD=∠CBD,則∠ABD=25°,再根據(jù)直徑所對的圓周角為直角得到∠ADB=90°,然后利用三角形內(nèi)角和定理可計算出∠DAB的度數(shù).【詳解】解:連結(jié)BD,如圖,∵點D是的中點,即,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圓的直徑,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故選:A.本題考查了圓周角定理及其推論:在同圓或等圓中,同弧或等弧所對的圓周角相等;直徑所對的圓周角為直角.9、C【分析】如過點A、B作x軸的垂線垂足分別為F、M.過點C作y軸的垂線交FA、根據(jù)△AOF∽△CAE,△AOF≌△BCN,△ACE≌△BOM解決問題.【詳解】解:如圖過點A、B作x軸的垂線垂足分別為F、M.過點C作y軸的垂線交FA、∵點A坐標(-2,1),點C縱坐標為4,∴AF=1,F(xiàn)O=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF,∵∠E=∠AFO=90°,∴△AEC∽△OFA,,∴點C坐標,∵△AOF≌△BCN,△AEC≌△BMO,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,,∴點B坐標,故選C.本題考查矩形的性質(zhì)、坐標與圖形的性質(zhì),添加輔助線構(gòu)造全等三角形或相似三角形是解題的關(guān)鍵,屬于中考??碱}型.10、C【分析】直接根據(jù)題意得出AB=AC,進而得出∠A=50°,再利用圓周角定理得出∠BOC=100°.【詳解】解:由題意可得:AB=AC,

∵∠ABC=65°,

∴∠ACB=65°,

∴∠A=50°,

∴∠BOC=100°,

故選:C.本題考查圓心角、弧、弦的關(guān)系.二、填空題(每小題3分,共24分)11、x1=3,x2=﹣1.【分析】整體移項后,利用因式分解法進行求解即可.【詳解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案為x1=3,x2=﹣1.12、【分析】根據(jù)題意可以求出各個扇形圓心角的度數(shù),然后利用扇形面積和三角形的面積公式即可求出陰影部分的面積.【詳解】解:∵是⊙的切線,,∴,∵點把弧分成三等分,,,,.故答案為:.本題主要考查扇形的面積公式和等腰直角三角形的性質(zhì),掌握扇形的面積公式是解題的關(guān)鍵.13、1【分析】根據(jù)是王牌的張數(shù)為1可得出結(jié)論.【詳解】∵13張牌全是黑桃,王牌是1張,∴抽到王牌的概率是1÷13=1,故答案為:1.本題考查了概率的公式計算,熟記概率=所求情況數(shù)與總情況數(shù)之比是解題的關(guān)鍵.14、x1=5,x2=7【分析】根據(jù)題意利用ab=0得到a=0或b=0,求出解即可.【詳解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案為:x1=5,x2=7.本題考查解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.15、【分析】列表得出所有等可能結(jié)果,從中找到積為大于-4小于2的結(jié)果數(shù),根據(jù)概率公式計算可得.【詳解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結(jié)果,其中積為大于-4小于2的有6種結(jié)果,∴積為大于-4小于2的概率為=,故答案為.此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16、【分析】由勾股定理求出BC的長,再證明四邊形DMAN是矩形,可得MN=AD,根據(jù)垂線段最短和三角形面積即可解決問題.【詳解】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四邊形DMAN是矩形,∴MN=AD,∴當AD⊥BC時,AD的值最小,此時,△ABC的面積=AB×AC=BC×AD,∴AD==,∴MN的最小值為;故答案為:.本題考查了矩形的判定和性質(zhì)、勾股定理、三角形面積、垂線段最短等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.17、(﹣1,2)【詳解】解:將二次函數(shù)轉(zhuǎn)化成頂點式可得:y=,則函數(shù)的頂點坐標為(-1,2)故答案為:(-1,2)本題考查二次函數(shù)的頂點坐標.18、<【分析】先根據(jù)反比例函數(shù)中k=﹣3<0判斷出函數(shù)圖象所在的象限及增減性,再根據(jù)各點橫坐標的特點即可得出結(jié)論.【詳解】∵比例函數(shù)y=﹣中,k<0,∴此函數(shù)圖象在二、四象限,∵﹣1<﹣1<0,∴P(﹣1,y1),Q(﹣1,y1)在第二象限,∵函數(shù)圖象在第二象限內(nèi),y隨x的增大而增大,∴y1<y1.故答案為:<.本題考查的是反比例函數(shù)的性質(zhì),熟知反比例函數(shù)的性質(zhì),掌握其函數(shù)增減性是關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2);(3)【分析】(1)根據(jù)直徑所對的圓周角是直角可得,然后利用ASA判定△ACD≌△ACE即可推出AE=AD;(2)連接OC交BD于G,設(shè),根據(jù)垂徑定理的推論可得出OC垂直平分BD,進而推出OG為中位線,再判定,利用對應(yīng)邊成比例即可求出的值;(3)連接OC交BD于G,由(2)可知:OC∥AB,OG=AB,然后利用ASA判定△BHA≌△GHC,設(shè),則,再判定,利用對應(yīng)邊成比例求出m的值,進而得到AB和AD的長,再用勾股定理求出BD,可求出△BED的面積,由C為DE的中點可得△BEC為△BED面積的一半,即可得出答案.【詳解】(1)證明:∵AD是的直徑∵AC平分在△ACD和△ACE中,∵∠ACD=∠ACE,AC=AC,∠DAC=∠EAC∴△ACD≌△ACE(ASA)(2)如圖,連接OC交BD于G,,設(shè),則,OC=AD=∴OC垂直平分BD又∵O為AD的中點∴OG為△ABD的中位線∴OC∥AB,OG=,CG=(3)如圖,連接OC交BD于G,由(2)可知:OC∥AB,OG=AB∴∠BHA=∠GCH在△BHA和△GHC中,∵∠BHA=∠GCH,AH=CH,∠BHA=∠GHC∴設(shè),則又,∴,∵AD是的直徑又本題考查了圓周角定理,垂徑定理的推論,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),以及勾股定理,是一道圓的綜合問題,解題的關(guān)鍵是連接OC利用垂徑定理得到中位線.20、(1)y=-x2+2x+1;(2)拋物線上存在點D,使得△ACD的面積最大,此時點D的坐標為(,)且△ACD面積的最大值;(1)在拋物線上存在點E,使得△ACE是以AC為直角邊的直角三角形點E的坐標是(1,4)或(-2,-5).【分析】(1)因為點A(1,0),點C(0,1)在拋物線y=?x2+bx+c上,可代入確定b、c的值;(2)過點D作DH⊥x軸,設(shè)D(t,-t2+2t+1),先利用圖象上點的特征表示出S△ACD=S梯形OCDH+S△AHD-S△AOC=,再利用頂點坐標求最值即可;(1)分兩種情況討論:①過點A作AE1⊥AC,交拋物線于點E1,交y軸于點F,連接E1C,求出點F的坐標,再求直線AE的解析式為y=x?1,再與二次函數(shù)的解析式聯(lián)立方程組求解即可;②過點C作CE⊥CA,交拋物線于點E2、交x軸于點M,連接AE2,求出直線CM的解析式為y=x+1,再與二次函數(shù)的解析式聯(lián)立方程組求解即可.【詳解】(1)解:∵二次函數(shù)y=-x2+bx+c與x軸的交點為點A(1,0)與y軸交于點C(0,1)∴解之得∴這個二次函數(shù)的解析式為y=-x2+2x+1(2)解:如圖,設(shè)D(t,-t2+2t+1),過點D作DH⊥x軸,垂足為H,則S△ACD=S梯形OCDH+S△AHD-S△AOC=(-t2+2t+1+1)+(1-t)(-t2+2t+1)-×1×1==∵<0∴當t=時,△ACD的面積有最大值此時-t2+2t+1=∴拋物線上存在點D,使得△ACD的面積最大,此時點D的坐標為(,)且△ACD面積的最大值(1)在拋物線上存在點E,使得△ACE是以AC為直角邊的直角三角形點E的坐標是(1,4)或(-2,-5).理由如下:有兩種情況:①如圖,過點A作AE1⊥AC,交拋物線于點E1、交y軸于點F,連接E1C.∵CO=AO=1,∴∠CAO=45°,∴∠FAO=45°,AO=OF=1.∴點F的坐標為(0,?1).設(shè)直線AE的解析式為y=kx+b,將(0,?1),(1,0)代入y=kx+b得:解得∴直線AE的解析式為y=x?1,由解得或∴點E1的坐標為(?2,?5).②如圖,過點C作CE⊥CA,交拋物線于點E2、交x軸于點M,連接AE2.∵∠CAO=45°,∴∠CMA=45°,OM=OC=1.∴點M的坐標為(?1,0),設(shè)直線CM的解析式為y=kx+b,將(0,1),(-1,0)代入y=kx+b得:解得∴直線CM的解析式為y=x+1.由解得:或∴點E2的坐標為(1,4).綜上,在拋物線上存在點E1(?2,?5)、E2(1,4),使△ACE1、△ACE2是以AC為直角邊的直角三角形.本題考查了用待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的最值問題,二次函數(shù)中的直角三角形問題.觀察圖象、求出特殊點坐標是解題的關(guān)鍵.21、【分析】(1)要求的值,應(yīng)該要求CD的長.證得∠A=∠BCD,然后有tanA=tan∠BCD,表示出兩個正切函數(shù)后可求得CD的長,于是可解.【詳解】解:∵∠ACB=90°,CD⊥AB于點D,

∴∠A+∠ACD=∠ACD+∠BCD=90°,

∴∠A=∠BCD,∴tanA=tan∠BCD,∴,∴,∴CD=,∴tanA=.本題考查了直角三角形三角函數(shù)的定義,利用三角函數(shù)構(gòu)建方程求解有時比用相似更簡便更直接.22、(1)15°;(2)證明見解析;(3)【解析】分析:(1)由旋轉(zhuǎn)可得∠ACM=60°,再根據(jù)等腰直角三角形MNC中,∠MCN=45°,運用角的和差關(guān)系進行計算即可得到∠NCO的度數(shù);(2)根據(jù)有一個角是60°的等腰三角形是等邊三角形進行證明即可;(3)根據(jù)△MNC是等腰直角三角形,△ACM是等邊三角形,判定△ACN≌△AMN,再根據(jù)Rt△ACD中,AD=CD=,等腰Rt△MNC中,DN=CM=1,即可得到AN=AD﹣ND=﹣1.詳解:(1)由旋轉(zhuǎn)可得∠ACM=60°.又∵等腰直角三角形MNC中,∠MCN=45°,∴∠NCO=60°﹣45°=15°;故答案為15°;(2)∵∠ACM=60°,CM=CA,∴△CAM為等邊三角形;(3)連接AN并延長,交CM于D.∵△MNC是等腰直角三角形,△ACM是等邊三角形,∴NC=NM=,CM=2,AC=AM=2.在△ACN和△AMN中,∵,∴△ACN≌△AMN(SSS),∴∠CAN=∠MAN,∴AD⊥CM,CD=CM=1,∴Rt△ACD中,AD=CD=,等腰Rt△MNC中,DN=CM=1,∴AN=AD﹣ND=﹣1.點睛:本題主要考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定以及全等三角形的判定與性質(zhì)的運用,解題時注意:有一個角是60°的等腰三角形是等邊三角形.解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形.23、(1);(2)10元:(3)不可能,理由見解析【解析】根據(jù)總利潤每件利潤銷售數(shù)量,可得y與x的函數(shù)關(guān)系式;根據(jù)中的函數(shù)關(guān)系列方程,解方程即可求解;根據(jù)中相等關(guān)系列方程,判斷方程有無實數(shù)根即可得.【詳解】解:根據(jù)題意得,y與x的函數(shù)關(guān)系式為;當時,,解得,不合題意舍去.答:當該專賣店每件童裝降價10元時,平均每天盈利400元;該專賣店不可能平均每天盈利600元.當時,,整理得,,方程沒有實數(shù)根,答:該專賣店不可能平均每天盈利600元.本題主要考查二次函數(shù)的應(yīng)用、一元二次方程的實際應(yīng)用,理解題意找到題目蘊含的等量關(guān)系是列方程求解的關(guān)鍵.24、(1)答案不唯一,如AB=BC.(2)見解析;(3)BE=2或或或.【解析】整體分析:(1)根據(jù)“準菱形”的定義解答,答案不唯一;(2)對角線相等且互相平分的四邊形是矩形,矩形的鄰邊相等時即是正方形;(3)根據(jù)平移的性質(zhì)和“準菱形”的定義,分四種情況畫出圖形,結(jié)合勾股定理求解.解:(1)答案不唯一,如AB=BC.(2)已知:四邊形ABCD是“準菱形”,AB=BC,對角線AC,BO交于點O,且AC=BD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論