2025年湖州市安吉縣中考數(shù)學(xué)猜題卷含解析_第1頁
2025年湖州市安吉縣中考數(shù)學(xué)猜題卷含解析_第2頁
2025年湖州市安吉縣中考數(shù)學(xué)猜題卷含解析_第3頁
2025年湖州市安吉縣中考數(shù)學(xué)猜題卷含解析_第4頁
2025年湖州市安吉縣中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025年湖州市安吉縣中考數(shù)學(xué)猜題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a(chǎn)2+a3=a5 D.(a2)3=a62.下列各曲線中表示y是x的函數(shù)的是()A. B. C. D.3.整數(shù)a、b在數(shù)軸上對應(yīng)點的位置如圖,實數(shù)c在數(shù)軸上且滿足,如果數(shù)軸上有一實數(shù)d,始終滿足,則實數(shù)d應(yīng)滿足().A. B. C. D.4.的相反數(shù)是()A. B.2 C. D.5.若關(guān)于x、y的方程組有實數(shù)解,則實數(shù)k的取值范圍是()A.k>4 B.k<4 C.k≤4 D.k≥46.在一次體育測試中,10名女生完成仰臥起坐的個數(shù)如下:38,52,47,46,50,50,61,72,45,48,則這10名女生仰臥起坐個數(shù)不少于50個的頻率為()A.0.3 B.0.4 C.0.5 D.0.67.左下圖是一些完全相同的小正方體搭成的幾何體的三視圖.這個幾何體只能是()A. B. C. D.8.拋物線y=3(x﹣2)2+5的頂點坐標(biāo)是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)9.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm10.﹣22×3的結(jié)果是()A.﹣5 B.﹣12 C.﹣6 D.12二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點A為函數(shù)y=(x>0)圖象上一點,連結(jié)OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△OBC的面積為____.12.如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點B,D在AC的兩側(cè),連接BD,交AC于點O,取AC,BD的中點E,F(xiàn),連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.13.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設(shè)Q、R分別是AB、AD上的動點,則△CQR的周長的最小值為_________.14.如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是_____cm.15.已知一組數(shù)據(jù)﹣3、3,﹣2、1、3、0、4、x的平均數(shù)是1,則眾數(shù)是_____.16.如圖,某水庫大壩的橫斷面是梯形,壩頂寬米,壩高是20米,背水坡的坡角為30°,迎水坡的坡度為1∶2,那么壩底的長度等于________米(結(jié)果保留根號)17.函數(shù)y=1x-1的自變量x的取值范圍是三、解答題(共7小題,滿分69分)18.(10分)如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).求反比例函數(shù)的解析式;觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.19.(5分)如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當(dāng)陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結(jié)果保留根號).20.(8分)定安縣定安中學(xué)初中部三名學(xué)生競選校學(xué)生會主席,他們的筆試成績和演講成績(單位:分)分別用兩種方式進行統(tǒng)計,如表和圖.ABC筆試859590口試8085(1)請將表和圖中的空缺部分補充完整;圖中B同學(xué)對應(yīng)的扇形圓心角為度;競選的最后一個程序是由初中部的300名學(xué)生進行投票,三名候選人的得票情況如圖(沒有棄權(quán)票,每名學(xué)生只能推薦一人),則A同學(xué)得票數(shù)為,B同學(xué)得票數(shù)為,C同學(xué)得票數(shù)為;若每票計1分,學(xué)校將筆試、演講、得票三項得分按4:3:3的比例確定個人成績,請計算三名候選人的最終成績,并根據(jù)成績判斷當(dāng)選.(從A、B、C、選擇一個填空)21.(10分)如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α為45°,從樓底B點1米的P點處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β為30°.已知樹高EF=6米,求塔CD的高度(結(jié)果保留根號).22.(10分)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).(1)求點B的坐標(biāo);(2)求經(jīng)過A、O、B三點的拋物線的函數(shù)表達式;(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標(biāo);若不存在,請說明理由.23.(12分)如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.24.(14分)先化簡,再求值:,其中x=-1.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)合并同類項法則判斷A、C;根據(jù)積的乘方法則判斷B;根據(jù)冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質(zhì)和運算法則是解題的關(guān)鍵.2、D【解析】根據(jù)函數(shù)的意義可知:對于自變量x的任何值,y都有唯一的值與之相對應(yīng),故D正確.故選D.3、D【解析】

根據(jù)a≤c≤b,可得c的最小值是﹣1,根據(jù)有理數(shù)的加法,可得答案.【詳解】由a≤c≤b,得:c最小值是﹣1,當(dāng)c=﹣1時,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故選D.本題考查了實數(shù)與數(shù)軸,利用a≤c≤b得出c的最小值是﹣1是解題的關(guān)鍵.4、B【解析】

根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.5、C【解析】

利用根與系數(shù)的關(guān)系可以構(gòu)造一個兩根分別是x,y的一元二次方程,方程有實數(shù)根,用根的判別式≥0來確定k的取值范圍.【詳解】解:∵xy=k,x+y=4,∴根據(jù)根與系數(shù)的關(guān)系可以構(gòu)造一個關(guān)于m的新方程,設(shè)x,y為方程的實數(shù)根.解不等式得故選:C.本題考查了一元二次方程的根的判別式的應(yīng)用和根與系數(shù)的關(guān)系.解題的關(guān)鍵是了解方程組有實數(shù)根的意義.6、C【解析】

用仰臥起坐個數(shù)不少于10個的頻數(shù)除以女生總?cè)藬?shù)10計算即可得解.【詳解】仰臥起坐個數(shù)不少于10個的有12、10、10、61、72共1個,所以,頻率==0.1.故選C.本題考查了頻數(shù)與頻率,頻率=.7、A【解析】試題分析:根據(jù)幾何體的主視圖可判斷C不合題意;根據(jù)左視圖可得B、D不合題意,因此選項A正確,故選A.考點:幾何體的三視圖8、C【解析】

根據(jù)二次函數(shù)的性質(zhì)y=a(x﹣h)2+k的頂點坐標(biāo)是(h,k)進行求解即可.【詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數(shù)圖象的頂點坐標(biāo)是(2,5),故選C.本題考查了二次函數(shù)的性質(zhì),根據(jù)拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(biāo)(對稱軸),最大(最小)值,增減性等.9、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據(jù)底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.10、B【解析】

先算乘方,再算乘法即可.【詳解】解:﹣22×3=﹣4×3=﹣1.故選:B.本題主要考查了有理數(shù)的混合運算,熟練掌握法則是解答本題的關(guān)鍵.有理數(shù)的混合運算,先乘方,再乘除,后加減,有括號的先算括號內(nèi)的.二、填空題(共7小題,每小題3分,滿分21分)11、6【解析】

根據(jù)題意可以分別設(shè)出點A、點B的坐標(biāo),根據(jù)點O、A、B在同一條直線上可以得到A、B的坐標(biāo)之間的關(guān)系,由AO=AC可知點C的橫坐標(biāo)是點A的橫坐標(biāo)的2倍,從而可以得到△OBC的面積.【詳解】設(shè)點A的坐標(biāo)為(a,),點B的坐標(biāo)為(b,),∵點C是x軸上一點,且AO=AC,∴點C的坐標(biāo)是(2a,0),設(shè)過點O(0,0),A(a,)的直線的解析式為:y=kx,∴=k?a,解得k=,又∵點B(b,)在y=x上,∴=?b,解得,=或=?(舍去),∴S△OBC==6.故答案為:6.本題考查了等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式,解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式.12、.【解析】

先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質(zhì)得BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對角線可得出BD=,BF=BD=,EF==.【詳解】∵∠ABC=∠ADC,∴A,B,C,D四點共圓,∴AC為直徑,∵E為AC的中點,∴E為此圓圓心,∵F為弦BD中點,∴EF⊥BD,連接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四邊形BNDM為矩形,又∵DM=DN,∴矩形BNDM為正方形,∴BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD為正方形BNDM的對角線,∴BD=BN=,BF=BD=,∴EF===.故答案為.本題考查了正方形的性質(zhì)與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握正方形與全等三角形的性質(zhì)與應(yīng)用.13、【解析】

作C關(guān)于AB的對稱點G,關(guān)于AD的對稱點F,可得三角形CQR的周長=CQ+QR+CR=GQ+QR+RF≥GF.根據(jù)圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長,從而求出△CQR的周長的最小值.【詳解】解:作C關(guān)于AB的對稱點G,關(guān)于AD的對稱點F,則三角形CQR的周長=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長的最小值為.本題考查了軸對稱問題,關(guān)鍵是根據(jù)軸對稱的性質(zhì)和兩點之間線段最短解答.14、2【解析】試題分析:BE=AB-AE=2.設(shè)AH=x,則DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考點:1折疊問題;2勾股定理;1相似三角形.15、3【解析】∵-3、3,-2、1、3、0、4、x的平均數(shù)是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一組數(shù)據(jù)-3、3,-2、1、3、0、4、2,∴眾數(shù)是3.故答案是:3.16、【解析】

過梯形上底的兩個頂點向下底引垂線、,得到兩個直角三角形和一個矩形,分別解、求得線段、的長,然后與相加即可求得的長.【詳解】如圖,作,,垂足分別為點E,F(xiàn),則四邊形是矩形.由題意得,米,米,,斜坡的坡度為1∶2,在中,∵,∴米.在Rt△DCF中,∵斜坡的坡度為1∶2,∴,∴米,∴(米).∴壩底的長度等于米.故答案為.此題考查了解直角三角形的應(yīng)用﹣坡度坡角問題,難度適中,解答本題的關(guān)鍵是構(gòu)造直角三角形和矩形,注意理解坡度與坡角的定義.17、x>1【解析】依題意可得x-1>0,解得x>1,所以函數(shù)的自變量x的取值范圍是x>1三、解答題(共7小題,滿分69分)18、(1)(2)﹣1<x<0或x>1.(3)四邊形OABC是平行四邊形;理由見解析.【解析】

(1)設(shè)反比例函數(shù)的解析式為(k>0),然后根據(jù)條件求出A點坐標(biāo),再求出k的值,進而求出反比例函數(shù)的解析式.(2)直接由圖象得出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;(3)首先求出OA的長度,結(jié)合題意CB∥OA且CB=,判斷出四邊形OABC是平行四邊形,再證明OA=OC【詳解】解:(1)設(shè)反比例函數(shù)的解析式為(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵點A在上,∴,解得k=2.,∴反比例函數(shù)的解析式為.(2)觀察圖象可知正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍為﹣1<x<0或x>1.(3)四邊形OABC是菱形.證明如下:∵A(﹣1,﹣2),∴.由題意知:CB∥OA且CB=,∴CB=OA.∴四邊形OABC是平行四邊形.∵C(2,n)在上,∴.∴C(2,1).∴.∴OC=OA.∴平行四邊形OABC是菱形.19、旗桿AB的高為(4+1)m.【解析】試題分析:過點C作CE⊥AB于E,過點B作BF⊥CD于F.在Rt△BFD中,分別求出DF、BF的長度.在Rt△ACE中,求出AE、CE的長度,繼而可求得AB的長度.試題解析:解:過點C作CE⊥AB于E,過點B作BF⊥CD于F,過點B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.∵BD=8,∴DF=4,BF=.∵AB∥CD,CE⊥AB,BF⊥CD,∴四邊形BFCE為矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).答:旗桿AB的高為(4+1)m.20、(1)90;(2)144度;(3)105,120,75;(4)B【解析】

(1)由條形圖可得A演講得分,由表格可得C筆試得分,據(jù)此補全圖形即可;(2)用360°乘以B對應(yīng)的百分比可得答案;(3)用總?cè)藬?shù)乘以A、B、C三人對應(yīng)的百分比可得答案;(4)根據(jù)加權(quán)平均數(shù)的定義計算可得.【詳解】解:(1)由條形圖知,A演講得分為90分,補全圖形如下:故答案為90;(2)扇圖中B同學(xué)對應(yīng)的扇形圓心角為360°×40%=144°,故答案為144;(3)A同學(xué)得票數(shù)為300×35%=105,B同學(xué)得票數(shù)為300×40%=120,C同學(xué)得票數(shù)為300×25%=75,故答案為105、120、75;(4)A的最終得分為=92.5(分),B的最終得分為=98(分),C的最終得分為=84(分),∴B最終當(dāng)選,故答案為B.本題考查的是條形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).21、(6+2)米【解析】

根據(jù)題意求出∠BAD=∠ADB=45°,進而根據(jù)等腰直角三角形的性質(zhì)求得FD,在Rt△PEH中,利用特殊角的三角函數(shù)值分別求出BF,即可求得PG,在Rt△PCG中,繼而可求出CG的長度.【詳解】由題意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ==,∴BF==5,∴PG=BD=BF+FD=5+6,∵tanβ=,∴CG=(5+6)·=5+2,∴CD=(6+2)米.本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是構(gòu)造直角三角形,利用三角函數(shù)的知識求解相關(guān)線段的長度.22、(1)B(-1.2);(2)y=;(3)見解析.【解析】

(1)過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,則可證明△ACO≌△ODB,則可求得OD和BD的長,可求得B點坐標(biāo);(2)根據(jù)A、B、O三點的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(3)由四邊形ABOP可知點P在線段AO的下方,過P作PE∥y軸交線段OA于點E,可求得直線OA解析式,設(shè)出P點坐標(biāo),則可表示出E點坐標(biāo),可表示出PE的長,進一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時P點的坐標(biāo).【詳解】(1)如圖1,過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點,∴可設(shè)拋物線解析式為y=ax2+bx,把A、B兩點坐標(biāo)代入可得,解得,∴經(jīng)過A、B、O原點的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點P在線段OA的下方,過P作PE∥y軸交AO于點E,如圖2,設(shè)直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設(shè)P點坐標(biāo)為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論