北京第八十一中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第1頁(yè)
北京第八十一中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第2頁(yè)
北京第八十一中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第3頁(yè)
北京第八十一中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第4頁(yè)
北京第八十一中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京第八十一中學(xué)八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案一、壓軸題1.請(qǐng)按照研究問(wèn)題的步驟依次完成任務(wù).(問(wèn)題背景)(1)如圖1的圖形我們把它稱(chēng)為“8字形”,請(qǐng)說(shuō)理證明∠A+∠B=∠C+∠D.(簡(jiǎn)單應(yīng)用)(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(shù)(可直接使用問(wèn)題(1)中的結(jié)論)(問(wèn)題探究)(3)如圖3,直線(xiàn)AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度數(shù)為;(拓展延伸)(4)在圖4中,若設(shè)∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問(wèn)∠P與∠C、∠B之間的數(shù)量關(guān)系為(用x、y表示∠P);(5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關(guān)系,直接寫(xiě)出結(jié)論.2.某校八年級(jí)數(shù)學(xué)興趣小組對(duì)“三角形內(nèi)角或外角平分線(xiàn)的夾角與第三個(gè)內(nèi)角的數(shù)量關(guān)系”進(jìn)行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線(xiàn)交于點(diǎn)P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線(xiàn)與△ABC的外角∠ABD的平分線(xiàn)交于點(diǎn)E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線(xiàn)交于點(diǎn)Q,請(qǐng)你寫(xiě)出∠BQC與∠A的數(shù)量關(guān)系,并證明.3.在中,,,是的角平分線(xiàn),于點(diǎn).(1)如圖1,連接,求證:是等邊三角形;(2)如圖2,點(diǎn)是線(xiàn)段上的一點(diǎn)(不與點(diǎn)重合),以為一邊,在下方作,交延長(zhǎng)線(xiàn)于點(diǎn).求證:;(3)如圖3,點(diǎn)是線(xiàn)段上的點(diǎn),以為一邊,在的下方作,交延長(zhǎng)線(xiàn)于點(diǎn).直接寫(xiě)出,與數(shù)量之間的關(guān)系.4.在中,,是直線(xiàn)上一點(diǎn),在直線(xiàn)上,且.(1)如圖1,當(dāng)D在上,在延長(zhǎng)線(xiàn)上時(shí),求證:;(2)如圖2,當(dāng)為等邊三角形時(shí),是的延長(zhǎng)線(xiàn)上一點(diǎn),在上時(shí),作,求證:;(3)在(2)的條件下,的平分線(xiàn)交于點(diǎn),連,過(guò)點(diǎn)作于點(diǎn),當(dāng),時(shí),求的長(zhǎng)度.5.(1)填空①把一張長(zhǎng)方形的紙片按如圖①所示的方式折疊,,為折痕,折疊后的點(diǎn)落在或的延長(zhǎng)線(xiàn)上,那么的度數(shù)是________;②把一張長(zhǎng)方形的紙片按如圖②所示的方式折疊,點(diǎn)與點(diǎn)重合,,為折痕,折疊后的點(diǎn)落在或的延長(zhǎng)線(xiàn)上,那么的度數(shù)是_______.(2)解答:①把一張長(zhǎng)方形的紙片按如圖③所示的方式折疊,,為折痕,折疊后的點(diǎn)落在或的延長(zhǎng)線(xiàn)上左側(cè),且,求的度數(shù);②把一張長(zhǎng)方形的紙片按如圖④所示的方式折疊,點(diǎn)與點(diǎn)重合,,為折痕,折疊后的點(diǎn)落在或的延長(zhǎng)線(xiàn)右側(cè),且,求的度數(shù).(3)探究:把一張四邊形的紙片按如圖⑤所示的方式折疊,,為折痕,設(shè),,,求,,之間的數(shù)量關(guān)系.6.如圖,若要判定紙帶兩條邊線(xiàn)a,b是否互相平行,我們可以采用將紙條沿AB折疊的方式來(lái)進(jìn)行探究.(1)如圖1,展開(kāi)后,測(cè)得,則可判定a//b,請(qǐng)寫(xiě)出判定的依據(jù)_________;(2)如圖2,若要使a//b,則與應(yīng)該滿(mǎn)足的關(guān)系是_________;(3)如圖3,紙帶兩條邊線(xiàn)a,b互相平行,折疊后的邊線(xiàn)b與a交于點(diǎn)C,若將紙帶沿(,分別在邊線(xiàn)a,b上)再次折疊,折疊后的邊線(xiàn)b與a交于點(diǎn),AB//,,求出的長(zhǎng).7.探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,若∠B=30°,則∠ACD的度數(shù)是度;拓展:如圖②,∠MCN=90°,射線(xiàn)CP在∠MCN的內(nèi)部,點(diǎn)A、B分別在CM、CN上,分別過(guò)點(diǎn)A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數(shù);應(yīng)用:如圖③,點(diǎn)A、B分別在∠MCN的邊CM、CN上,射線(xiàn)CP在∠MCN的內(nèi)部,點(diǎn)D、E在射線(xiàn)CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB=度.8.如圖所示,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo),過(guò)點(diǎn)作軸,垂足為點(diǎn),過(guò)點(diǎn)作直線(xiàn)軸,點(diǎn)從點(diǎn)出發(fā)在軸上沿著軸的正方向運(yùn)動(dòng).(1)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)處,過(guò)點(diǎn)作的垂線(xiàn)交直線(xiàn)于點(diǎn),證明,并求此時(shí)點(diǎn)的坐標(biāo);(2)點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn),問(wèn)是否存在點(diǎn),使得以為頂點(diǎn)的三角形和全等,若存在求點(diǎn)的坐標(biāo)以及此時(shí)對(duì)應(yīng)的點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.9.在△ABC中,∠BAC=45°,CD⊥AB,垂足為點(diǎn)D,M為線(xiàn)段DB上一動(dòng)點(diǎn)(不包括端點(diǎn)),點(diǎn)N在直線(xiàn)AC左上方且∠NCM=135°,CN=CM,如圖①.(1)求證:∠ACN=∠AMC;(2)記△ANC得面積為5,記△ABC得面積為5.求證:;(3)延長(zhǎng)線(xiàn)段AB到點(diǎn)P,使BP=BM,如圖②.探究線(xiàn)段AC與線(xiàn)段DB滿(mǎn)足什么數(shù)量關(guān)系時(shí)對(duì)于滿(mǎn)足條件的任意點(diǎn)M,AN=CP始終成立?(寫(xiě)出探究過(guò)程)10.閱讀并填空:如圖,是等腰三角形,,是邊延長(zhǎng)線(xiàn)上的一點(diǎn),在邊上且聯(lián)接交于,如果,那么,為什么?解:過(guò)點(diǎn)作交于所以(兩直線(xiàn)平行,同位角相等)(________)在與中所以,(________)所以(________)因?yàn)椋ㄒ阎┧裕╛_______)所以(等量代換)所以(________)所以11.(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線(xiàn)l過(guò)點(diǎn)C,過(guò)點(diǎn)A作AD⊥l,過(guò)點(diǎn)B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.(2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個(gè)銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個(gè)頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).(3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線(xiàn)y=﹣3x+3與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線(xiàn)PQ繞P點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)45°后,所得的直線(xiàn)交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).12.(1)問(wèn)題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線(xiàn)上,連接BE.①請(qǐng)直接寫(xiě)出∠AEB的度數(shù)為_(kāi)____;②試猜想線(xiàn)段AD與線(xiàn)段BE有怎樣的數(shù)量關(guān)系,并證明;(2)拓展探究:圖2,△ACB和△DCE均為等腰三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同-直線(xiàn)上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)線(xiàn)段CM、AE、BE之間的數(shù)量關(guān)系,并說(shuō)明理由.13.如圖1.在△ABC中,∠ACB=90°,AC=BC=10,直線(xiàn)DE經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A,B分別作AD⊥DE,BE⊥DE,垂足分別為點(diǎn)D和E,AD=8,BE=6.(1)①求證:△ADC≌△CEB;②求DE的長(zhǎng);(2)如圖2,點(diǎn)M以3個(gè)單位長(zhǎng)度/秒的速度從點(diǎn)C出發(fā)沿著邊CA運(yùn)動(dòng),到終點(diǎn)A,點(diǎn)N以8個(gè)單位長(zhǎng)度/秒的速度從點(diǎn)B出發(fā)沿著線(xiàn)BC—CA運(yùn)動(dòng),到終點(diǎn)A.M,N兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒(t>0),當(dāng)點(diǎn)N到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),過(guò)點(diǎn)M作PM⊥DE于點(diǎn)P,過(guò)點(diǎn)N作QN⊥DE于點(diǎn)Q;①當(dāng)點(diǎn)N在線(xiàn)段CA上時(shí),用含有t的代數(shù)式表示線(xiàn)段CN的長(zhǎng)度;②當(dāng)t為何值時(shí),點(diǎn)M與點(diǎn)N重合;③當(dāng)△PCM與△QCN全等時(shí),則t=.14.問(wèn)題背景:(1)如圖1,已知△ABC中,∠BAC=90°,AB=AC,直線(xiàn)m經(jīng)過(guò)點(diǎn)A,BD⊥直線(xiàn)m,CE⊥直線(xiàn)m,垂足分別為點(diǎn)D、E.求證:DE=BD+CE.拓展延伸:(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線(xiàn)m上,并且有∠BDA=∠AEC=∠BAC.請(qǐng)寫(xiě)出DE、BD、CE三條線(xiàn)段的數(shù)量關(guān)系.(不需要證明)實(shí)際應(yīng)用:(3)如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(-2,0),點(diǎn)A的坐標(biāo)為(-6,3),請(qǐng)直接寫(xiě)出B點(diǎn)的坐標(biāo).15.已知,如圖1,直線(xiàn)l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線(xiàn)AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線(xiàn)11上,點(diǎn)A的右側(cè),過(guò)D作l3⊥l1,點(diǎn)E在直線(xiàn)l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線(xiàn),交BD于F,交AD于G.試說(shuō)明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線(xiàn)AM上運(yùn)動(dòng),∠BDC的角平分線(xiàn)交EB的延長(zhǎng)線(xiàn)于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)直接寫(xiě)出比值.16.探索發(fā)現(xiàn):……根據(jù)你發(fā)現(xiàn)的規(guī)律,回答下列問(wèn)題:(1)=,=;(2)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:(3)利用規(guī)律解方程:17.在△ABC中,AB=AC,D是直線(xiàn)BC上一點(diǎn),以AD為一條邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.(1)如圖,當(dāng)點(diǎn)D在BC延長(zhǎng)線(xiàn)上移動(dòng)時(shí),若∠BAC=40°,則∠ACE=,∠DCE=,BC、DC、CE之間的數(shù)量關(guān)系為;(2)設(shè)∠BAC=α,∠DCE=β.①當(dāng)點(diǎn)D在BC延長(zhǎng)線(xiàn)上移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;②當(dāng)點(diǎn)D在直線(xiàn)BC上(不與B,C兩點(diǎn)重合)移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論.(3)當(dāng)CE∥AB時(shí),若△ABD中最小角為15°,試探究∠ACB的度數(shù)(直接寫(xiě)出結(jié)果,無(wú)需寫(xiě)出求解過(guò)程).18.在初中數(shù)學(xué)學(xué)習(xí)階段,我們常常會(huì)利用一些變形技巧來(lái)簡(jiǎn)化式子,解答問(wèn)題.材料一:在解決某些分式問(wèn)題時(shí),倒數(shù)法是常用的變形技巧之一,所謂倒數(shù)法,即把式子變成其倒數(shù)形式,從而運(yùn)用約分化簡(jiǎn),以達(dá)到計(jì)算目的.例:已知:,求代數(shù)式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14材料二:在解決某些連等式問(wèn)題時(shí),通??梢砸?yún)?shù)“k”,將連等式變成幾個(gè)值為k的等式,這樣就可以通過(guò)適當(dāng)變形解決問(wèn)題.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)則根據(jù)材料回答問(wèn)題:(1)已知,求x+的值.(2)已知,(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值.19.已知:MN∥PQ,點(diǎn)A,B分別在MN,PQ上,點(diǎn)C為MN,PQ之間的一點(diǎn),連接CA,CB.(1)如圖1,求證:∠C=∠MAC+∠PBC;(2)如圖2,AD,BD,AE,BE分別為∠MAC,∠PBC,∠CAN,∠CBQ的角平分線(xiàn),求證:∠D+∠E=180°;(3)在(2)的條件下,如圖3,過(guò)點(diǎn)D作DA的垂線(xiàn)交PQ于點(diǎn)G,點(diǎn)F在PQ上,∠FDA=2∠FDB,F(xiàn)D的延長(zhǎng)線(xiàn)交EA的延長(zhǎng)線(xiàn)于點(diǎn)H,若3∠C=4∠E,猜想∠H與∠GDB的倍數(shù)關(guān)系并證明.20.在等腰中,,為邊上的高,點(diǎn)在的外部且,,連接交直線(xiàn)于點(diǎn),連接.(1)如圖①,當(dāng)時(shí),求證:;(2)如圖②,當(dāng)時(shí),求的度數(shù);(3)如圖③,當(dāng)時(shí),求證:.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、壓軸題1.(1)見(jiàn)解析;(2)∠P=23o;(3)∠P=26o;(4)∠P=;(5)∠P=.【解析】【分析】(1)根據(jù)三角形內(nèi)角和定理即可證明;(2)如圖2,根據(jù)角平分線(xiàn)的性質(zhì)得到∠1=∠2,∠3=∠4,列方程組即可得到結(jié)論;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解決問(wèn)題;(4)根據(jù)題意得出∠B+∠CAB=∠C+∠BDC,再結(jié)合∠CAP=∠CAB,∠CDP=∠CDB,得到y(tǒng)+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),從而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根據(jù)題意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再結(jié)合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【詳解】解:(1)證明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如圖2,∵AP、CP分別平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的結(jié)論得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如圖3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案為:26°;(4)由題意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案為:∠P=;(5)由題意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,∴∠P=90°+∠BCD-∠BAD+∠D=90°+(∠BCD-∠BAD)+∠D=90°+(∠B-∠D)+∠D=,故答案為:∠P=.【點(diǎn)睛】本題考查三角形內(nèi)角和,三角形的外角的性質(zhì)、多邊形的內(nèi)角和等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用方程組的思想思考問(wèn)題,屬于中考??碱}型.2.(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,證明見(jiàn)解析【解析】【分析】(1)根據(jù)三角形的內(nèi)角和化為角平分線(xiàn)的定義;(2)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,用∠A與∠1表示出∠2,再利用∠E與∠1表示出∠2,于是得到結(jié)論;(3)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及角平分線(xiàn)的定義表示出∠EBC與∠ECB,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解.【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)和分別是和的角平分線(xiàn),,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論:.【點(diǎn)睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.3.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)結(jié)論:,證明見(jiàn)解析.【解析】【分析】(1)先根據(jù)直角三角形的性質(zhì)得出,再根據(jù)角平分線(xiàn)的性質(zhì)可得,然后根據(jù)三角形的判定定理與性質(zhì)可得,最后根據(jù)等邊三角形的判定即可得證;(2)如圖(見(jiàn)解析),延長(zhǎng)ED使得,連接MF,先根據(jù)直角三角形的性質(zhì)、等邊三角形的判定得出是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證;(3)如圖(見(jiàn)解析),參照題(2),先證是等邊三角形,再根據(jù)等邊三角形的性質(zhì)、角的和差得出,然后根據(jù)三角形全等的判定與性質(zhì)、等量代換即可得證.【詳解】(1)是的角平分線(xiàn),在和中,是等邊三角形;(2)如圖,延長(zhǎng)ED使得,連接MF,是的角平分線(xiàn),是等邊三角形,即在和中,,即即;(3)結(jié)論:,證明過(guò)程如下:如圖,延長(zhǎng)BD使得,連接NH由(2)可知,是等邊三角形,即在和中,,即即.【點(diǎn)睛】本題考查了直角三角形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),較難的是題(2)和(3),通過(guò)作輔助線(xiàn),構(gòu)造一個(gè)等邊三角形是解題關(guān)鍵.4.(1)見(jiàn)解析;(2)見(jiàn)解析;(3)3【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)和外角的性質(zhì)即可得到結(jié)論;(2)過(guò)E作EF∥AC交AB于F,根據(jù)已知條件得到△ABC是等邊三角形,推出△BEF是等邊三角形,得到BE=EF,∠BFE=60°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(3)連接AF,證明△ABF≌△CBF,得AF=CF,再證明DH=AH=CF=3.【詳解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等邊三角形,∴∠B=60°,∴△BEF是等邊三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF與△CAD中,,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)連接AF,如圖3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=AF=CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰三角形和直角三角形的性質(zhì),三角形的外角的性質(zhì),等邊三角形的判定和性質(zhì),證明三角形全等是解決問(wèn)題的關(guān)鍵.5.,;,;,.【解析】【分析】(1)①如圖①知,得可求出解.②由圖②知得可求出解.(2)①由圖③折疊知,可推出,即可求出解.②由圖④中折疊知,可推出,即可求出解.(3)如圖⑤-1、⑤-2中分別由折疊可知,、,即可求得、.【詳解】解:(1)①如圖①中,,,,故答案為.②如圖②中,,,故答案為.(2)①如圖③中由折疊可知,,,,,;②如圖④中根據(jù)折疊可知,,,,,,;(3)如圖⑤-1中,由折疊可知,,;如圖⑤-2中,由折疊可知,,.【點(diǎn)睛】本題考查了圖形的變換中折疊屬全等變換,圖形的角度及邊長(zhǎng)不變及一些角度的計(jì)算問(wèn)題,突出考查學(xué)生的觀(guān)察能力、思維能力以及動(dòng)手操作能力,本題是代數(shù)、幾何知識(shí)的綜合運(yùn)用典型題目.6.(1)內(nèi)錯(cuò)角相等,兩直線(xiàn)平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根據(jù)平行線(xiàn)的判定定理,即可得到答案;(2)由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,結(jié)合三角形內(nèi)角和定理,即可得到答案;(3)分兩種情況:①當(dāng)B1在B的左側(cè)時(shí),如圖2,當(dāng)B1在B的右側(cè)時(shí),如圖3,分別求出的長(zhǎng),即可得到答案.【詳解】(1)∵,∴a∥b(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行),故答案是:內(nèi)錯(cuò)角相等,兩直線(xiàn)平行;(2)如圖1,由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a∥b,則與應(yīng)該滿(mǎn)足的關(guān)系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①當(dāng)B1在B的左側(cè)時(shí),如圖2,∵AB//,a∥b,∴AA1=BB1=3,∴=AC-AA1=7-3=4;②當(dāng)B1在B的右側(cè)時(shí),如圖3,∵AB//,a∥b,∴AA1=BB1=3,∴=AC+AA1=7+3=10.綜上所述:=4或10.【點(diǎn)睛】本題主要考查平行線(xiàn)的判定和性質(zhì)定理,折疊的性質(zhì)以及三角形的內(nèi)角和定理,掌握“平行線(xiàn)間的平行線(xiàn)段長(zhǎng)度相等”是解題的關(guān)鍵.7.探究:30;(2)拓展:20°;(3)應(yīng)用:120【解析】【分析】(1)利用直角三角形的性質(zhì)依次求出∠A,∠ACD即可;(2)利用直角三角形的性質(zhì)直接計(jì)算得出即可;(3)利用三角形的外角的性質(zhì)得出結(jié)論,直接轉(zhuǎn)化即可得出結(jié)論.【詳解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案為:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案為120.【點(diǎn)睛】此題是三角形的綜合題,主要考查了直角三角形的性質(zhì),三角形的外角的性質(zhì),垂直的定義,解本題的關(guān)鍵是充分利用直角三角形的性質(zhì):兩銳角互余,是一道比較簡(jiǎn)單的綜合題.8.(1)證明見(jiàn)解析;;(2)存在,,或,或,或,或,或,.【解析】【分析】(1)通過(guò)全等三角形的判定定理ASA證得△ABP≌△PCD,由全等三角形的對(duì)應(yīng)邊相等證得AP=DP,DC=PB=3,易得點(diǎn)D的坐標(biāo);(2)設(shè)P(a,0),Q(2,b).需要分類(lèi)討論:①AB=PC,BP=CQ;②AB=CQ,BP=PC.結(jié)合兩點(diǎn)間的距離公式列出方程組,通過(guò)解方程組求得a、b的值,得解.【詳解】(1)軸在和中,(2)設(shè),①,,解得或,或,或,或,②,,,解得,或,綜上:,或,或,或,或,或,【點(diǎn)睛】考查了三角形綜合題.涉及到了全等三角形的判定與性質(zhì),兩點(diǎn)間的距離公式,一元一次絕對(duì)值方程組的解法等知識(shí)點(diǎn).解答(2)題時(shí),由于沒(méi)有指明全等三角形的對(duì)應(yīng)邊(角),所以需要分類(lèi)討論,以防漏解.9.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)當(dāng)AC=2BD時(shí),對(duì)于滿(mǎn)足條件的任意點(diǎn)N,AN=CP始終成立,證明見(jiàn)解析.【解析】【分析】(1)由三角形的內(nèi)角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)過(guò)點(diǎn)N作NE⊥AC于E,由“AAS”可證△NEC≌△CDM,可得NE=CD,由三角形面積公式可求解;(3)過(guò)點(diǎn)N作NE⊥AC于E,由“SAS”可證△NEA≌△CDP,可得AN=CP.【詳解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)過(guò)點(diǎn)N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S1AC?NE,S2AB?CD,∴;(3)當(dāng)AC=2BD時(shí),對(duì)于滿(mǎn)足條件的任意點(diǎn)N,AN=CP始終成立,理由如下:過(guò)點(diǎn)N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【點(diǎn)睛】本題三角形綜合題,考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,三角形面積公式等知識(shí),添加恰當(dāng)輔助線(xiàn)構(gòu)造全等三角形是本題的關(guān)鍵.10.見(jiàn)解析【解析】【分析】先根據(jù)平行線(xiàn)的性質(zhì),得到角的關(guān)系,然后證明,寫(xiě)出證明過(guò)程和依據(jù)即可.【詳解】解:過(guò)點(diǎn)作交于,∴(兩直線(xiàn)平行,同位角相等),∴(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),在與中,∴,()∴(全等三角形對(duì)應(yīng)邊相等)∵(已知)∴(等邊對(duì)等角)∴(等量代換)∴(等角對(duì)等邊)∴;【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),平行線(xiàn)的性質(zhì),解題的關(guān)鍵是由平行線(xiàn)的性質(zhì)正確找到證明三角形全等的條件,從而進(jìn)行證明.11.(1)見(jiàn)解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判斷出∠ACB=∠ADC,再判斷出∠CAD=∠BCE,進(jìn)而判斷出△ACD≌△CBE,即可得出結(jié)論;(2)先判斷出MF=NG,OF=MG,進(jìn)而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出結(jié)論;(3)先求出OP=3,由y=0得x=1,進(jìn)而得出Q(1,0),OQ=1,再判斷出PQ=SQ,即可判斷出OH=4,SH=0Q=1,進(jìn)而求出直線(xiàn)PR的解析式,即可得出結(jié)論.【詳解】證明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如圖2,過(guò)點(diǎn)M作MF⊥y軸,垂足為F,過(guò)點(diǎn)N作NG⊥MF,交FM的延長(zhǎng)線(xiàn)于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(jìn)(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴點(diǎn)N的坐標(biāo)為(4,2),(3)如圖3,過(guò)點(diǎn)Q作QS⊥PQ,交PR于S,過(guò)點(diǎn)S作SH⊥x軸于H,對(duì)于直線(xiàn)y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),設(shè)直線(xiàn)PR為y=kx+b,則,解得∴直線(xiàn)PR為y=﹣x+3由y=0得,x=6∴R(6,0).【點(diǎn)睛】本題是一次函數(shù)綜合題,主要考查了待定系數(shù)法,全等三角形的判定和性質(zhì),構(gòu)造出全等三角形是解本題的關(guān)鍵.12.(1)①60°;②AD=BE.證明見(jiàn)解析;(2)∠AEB=90°;AE=2CM+BE;理由見(jiàn)解析.【解析】【分析】(1)①由條件△ACB和△DCE均為等邊三角形,易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點(diǎn)A,D,E在同一直線(xiàn)上可求出∠ADC,從而可以求出∠AEB的度數(shù).②由△ACD≌△BCE,可得AD=BE;(2)首先根據(jù)△ACB和△DCE均為等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,據(jù)此判斷出∠ACD=∠BCE;然后根據(jù)全等三角形的判定方法,判斷出△ACD≌△BCE,即可判斷出BE=AD,∠BEC=∠ADC,進(jìn)而判斷出∠AEB的度數(shù)為90°;根據(jù)DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,據(jù)此判斷出AE=BE+2CM.【詳解】(1)①∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠CEB=∠ADC=180°?∠CDE=120°,∴∠AEB=∠CEB?∠CED=60°;②AD=BE.證明:∵△ACD≌△BCE,∴AD=BE.(2)∠AEB=90°;AE=2CM+BE;理由如下:∵△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC-∠CED=135°-45°=90°.在等腰直角△DCE中,CM為斜邊DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、等腰直角三角形的性質(zhì)、三角形全等的判定與性質(zhì)等知識(shí),解題時(shí)需注意運(yùn)用已有的知識(shí)和經(jīng)驗(yàn)解決相似問(wèn)題.13.(1)①證明見(jiàn)解析;②DE=14;(2)①8t-10;②t=2;③t=【解析】【分析】(1)①先證明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性質(zhì)得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①當(dāng)點(diǎn)N在線(xiàn)段CA上時(shí),根據(jù)CN=CN?BC即可得出答案;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得t=2即可;③分兩種情況:當(dāng)點(diǎn)N在線(xiàn)段BC上時(shí),△PCM≌△QNC,則CM=CN,得3t=10?8t,解得t=1011;當(dāng)點(diǎn)N在線(xiàn)段CA上時(shí),△PCM≌△QCN,則3t=8t?10,解得t=2;即可得出答案.【詳解】(1)①證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①當(dāng)點(diǎn)N在線(xiàn)段CA上時(shí),如圖3所示:CN=CN?BC=8t?10;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得:t=2,∴當(dāng)t為2秒時(shí),點(diǎn)M與點(diǎn)N重合;③分兩種情況:當(dāng)點(diǎn)N在線(xiàn)段BC上時(shí),△PCM≌△QNC,∴CM=CN,∴3t=10?8t,解得:t=;當(dāng)點(diǎn)N在線(xiàn)段CA上時(shí),△PCM≌△QCN,點(diǎn)M與N重合,CM=CN,則3t=8t?10,解得:t=2;綜上所述,當(dāng)△PCM與△QCN全等時(shí),則t等于s或2s,故答案為:s或2s.【點(diǎn)睛】本題是三角形綜合題目,考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、直角三角形的性質(zhì)、分類(lèi)討論等知識(shí);本題綜合性強(qiáng),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.14.(1)證明見(jiàn)解析;(2)DE=BD+CE;(3)B(1,4)【解析】【分析】(1)證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AE=BD,AD=CE,結(jié)合圖形解答即可;(2)根據(jù)三角形內(nèi)角和定理、平角的定義證明∠ABD=∠CAE,證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AE=BD,AD=CE,結(jié)合圖形解答即可;(3)根據(jù)△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根據(jù)坐標(biāo)與圖形性質(zhì)解答.【詳解】(1)證明:∵BD⊥直線(xiàn)m,CE⊥直線(xiàn)m,∴∠ADB=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD∵在△ADB和△CEA中∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE即:DE=BD+CE(2)解:數(shù)量關(guān)系:DE=BD+CE理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,∴∠ABD=∠CAE,在△ABD和△CAE中,∴△ABD≌△CAE(AAS)∴AE=BD,AD=CE,∴DE=AD+AE=BD+CE;(3)解:如圖,作AE⊥x軸于E,BF⊥x軸于F,由(1)可知,△AEC≌△CFB,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴點(diǎn)B的坐標(biāo)為B(1,4).【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì)、坐標(biāo)與圖形性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.15.(1)互相平行;(2)35,20;(3)見(jiàn)解析;(4)不變,【解析】【分析】(1)根據(jù)平行線(xiàn)的判定定理即可得到結(jié)論;(2)根據(jù)角平分線(xiàn)的定義和平行線(xiàn)的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線(xiàn)的定義和平行線(xiàn)的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線(xiàn)的定義,平行線(xiàn)的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線(xiàn)l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線(xiàn)的判定和性質(zhì),角平分線(xiàn)的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.16.(1);(2);(3)見(jiàn)解析.【解析】【分析】(1)根據(jù)簡(jiǎn)單的分式可得,相鄰兩個(gè)數(shù)的積的倒數(shù)等于它們的倒數(shù)之差,即可得到和(2)根據(jù)(1)規(guī)律將乘法寫(xiě)成減法的形式,可以觀(guān)察出前一項(xiàng)的減數(shù)等于后一項(xiàng)的被減數(shù),因此可得它們的和.(3)首先利用(2)的和的結(jié)果將左邊化簡(jiǎn),再利用分式方程的解法求解即可.【詳解】解:(1),;故答案為(2)原式=;(3)已知等式整理得:所以,原方程即:,方程的兩邊同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,檢驗(yàn):把x=3代入x(x+5)=24≠0,∴原方程的解為:x=3.【點(diǎn)睛】本題主要考查學(xué)生的歸納總結(jié)能力,關(guān)鍵在于根據(jù)簡(jiǎn)單的數(shù)的運(yùn)算尋找規(guī)律,是考試的熱點(diǎn).17.(1)70°,40°,BC+DC=CE;(2)①α=β;②當(dāng)點(diǎn)D在BC上移動(dòng)時(shí),α=β或α+β=180°;(3)∠ACB=60°.【解析】【分析】(1)證△BAD≌△CAE,推出∠B=∠ACE,根據(jù)三角形外角性質(zhì)和全等三角形的性質(zhì)求出即可;(2)①證△BAD≌△CAE,推出∠B=∠ACE,根據(jù)三角形外角性質(zhì)求出即可;②分三種情況:(Ⅰ)當(dāng)D在線(xiàn)段BC上時(shí),證明△ABD≌△ACE(SAS),則∠ADB=∠AEC,∠ABC=∠ACE,推出∠DAE+∠DCE=180°,即α+β=180°;(Ⅱ)當(dāng)點(diǎn)D在線(xiàn)段BC反向延長(zhǎng)線(xiàn)上時(shí),α=β,同理可證明△ABD≌△ACE(SAS),則∠ABD=∠ACE,推出∠BAC=∠DCE,即α=β;(Ⅲ)當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),由①得α=β;(3)當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上或在線(xiàn)段BC反向延長(zhǎng)線(xiàn)上移動(dòng)時(shí),α=β,由CE∥AB,得∠ABC=∠DCE,推出∠ABC=∠BAC,易證∠ABC=∠ACB=∠BAC,則△ABC是等邊三角形,得出∠ACB=60°;當(dāng)D在線(xiàn)段BC上時(shí),α+β=180°,由CE∥AB,得∠ABC+∠DCE=180°,推出∠ABC=∠BAC,易證∠ABC=∠ACB=∠BAC,則△ABC是等邊三角形,得出∠ACB=60°.【詳解】(1)如圖1所示:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B(180°﹣40°)=70°,BD=CE,∴BC+DC=CE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=40°,∴∠DCE=40°.故答案為:70°,40°,BC+DC=CE;(2)①當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上移動(dòng)時(shí),α與β之間的數(shù)量關(guān)系是α=β.理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠B=∠ACE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;②分三種情況:(Ⅰ)當(dāng)D在線(xiàn)段BC上時(shí),α+β=180°,如圖2所示.理由如下:同理可證明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE.∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°.∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°;(Ⅱ)當(dāng)點(diǎn)D在線(xiàn)段BC反向延長(zhǎng)線(xiàn)上時(shí),α=β,如圖3所示.理由如下:同理可證明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE.∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;(Ⅲ)當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),如圖1所示,α=β;綜上所述:當(dāng)點(diǎn)D在BC上移動(dòng)時(shí),α=β或α+β=180°;(3)∠ACB=60°.理由如下:∵當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上或在線(xiàn)段BC反向延長(zhǎng)線(xiàn)上移動(dòng)時(shí),α=β,即∠BAC=∠DCE.∵CE∥AB,∴∠ABC=∠DCE,∴∠ABC=∠BAC.∵AB=AC,∴∠ABC=∠ACB=∠BAC,∴△ABC是等邊三角形,∴∠ACB=60°;∵當(dāng)D在線(xiàn)段BC上時(shí),α+β=180°,即∠BAC+∠DCE=180°.∵CE∥AB,∴∠ABC+∠DCE=180°,∴∠ABC=∠BAC.∵AB=AC,∴∠ABC=∠ACB=∠BAC,∴△ABC是等邊三角形,∴∠ACB=60°;綜上所述:當(dāng)CE∥AB時(shí),若△ABD中最小角為15°,∠ACB的度數(shù)為60°.【點(diǎn)睛】本題是三角形綜合題目,考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定與性質(zhì)、平行

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論