2025年人教版8年級數學上冊《軸對稱》重點解析試卷(含答案解析)_第1頁
2025年人教版8年級數學上冊《軸對稱》重點解析試卷(含答案解析)_第2頁
2025年人教版8年級數學上冊《軸對稱》重點解析試卷(含答案解析)_第3頁
2025年人教版8年級數學上冊《軸對稱》重點解析試卷(含答案解析)_第4頁
2025年人教版8年級數學上冊《軸對稱》重點解析試卷(含答案解析)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學上冊《軸對稱》重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、在下列命題中,正確的是()A.一組對邊平行的四邊形是平行四邊形B.有一個角是直角的四邊形是矩形C.有一組鄰邊相等的四邊形是菱形D.對角線互相垂直平分的四邊形是菱形2、如圖,已知△ABC,AB<BC,用尺規(guī)作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是(

)A. B.C. D.3、如圖,已知是的角平分線,是的垂直平分線,,,則的長為(

)A.6 B.5 C.4 D.4、如圖,是由大小一樣的小正方形組成的網格,△ABC的三個頂點均落在小正方形的頂點上.在網格上能畫出的三個頂點都落在小正方形的頂點上,且與△ABC成軸對稱的三角形共有(

)A.5個 B.4個 C.3個 D.2個5、如圖,D是等邊的邊AC上的一點,E是等邊外一點,若,,則對的形狀最準確的是(

).A.等腰三角形 B.直角三角形 C.等邊三角形 D.不等邊三角形6、已知在△ABC中,點P在三角形內部,點P到三個頂點的距離相等,則點P是(

)A.三條角平分線的交點 B.三條高線的交點C.三條中線的交點 D.三條邊垂直平分線的交點7、等腰三角形兩邊長為3,6,則第三邊的長是(

)A.3 B.6 C. D.3或68、下面四個圖形分別是節(jié)能、節(jié)水、低碳和綠色食品標志,在這四個標志中,是軸對稱圖形的是()A. B. C. D.9、如圖,在中,,觀察圖中尺規(guī)作圖的痕跡,則的度數為(

)A. B. C. D.10、如圖,在△ABC中,DE是AC的垂直平分線,且分別交BC,AC于點D和E,∠B=60°,∠C=25°,則∠BAD為(

)A.50° B.70° C.75° D.80°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在中,的中垂線交于點,交于點,已知,的周長為22,則______.2、等腰三角形的一個外角為100°,則它的底角是______.3、已知:如圖,在中,點在邊上,,則_______度.4、如圖,將平行四邊形ABCD沿對角線BD折疊,使點A落在點處.若,則為_________.5、已知,點P為內一點,點A為OM上一點,點B為ON上一點,當的周長取最小值時,的度數為_______________.6、在△ABC中,∠A+∠B=∠C,且AB=2BC,∠B=_________.7、如圖將長方形折疊,折痕為,的對應邊與交于點,若,則的度數為_______.8、如圖,在中,,以為邊,作,滿足,為上一點,連接,,連接.下列結論中正確的是________(填序號)①;②;③若,則;④.9、如圖,在中,,點,都在邊上,,若,則的長為_______.10、如圖,在中,,,垂直平分,垂足為Q,交于點P.按以下步驟作圖:①以點A為圓心,以適當的長為半徑作弧,分別交邊于點D,E;②分別以點D,E為圓心,以大于的長為半徑作弧,兩弧相交于點F;⑤作射線.若與的夾角為,則________°.三、解答題(5小題,每小題6分,共計30分)1、如圖,在平面直角坐標系中,A(-2,4),B(-3,1),C(1,-2).(1)在圖中作出△ABC關于y軸的對稱圖形△A′B′C′;(2)寫出點A′、B′、C′的坐標;(3)連接OB、OB′,請直接回答:①△OAB的面積是多少?②△OBC與△OB′C′這兩個圖形是否成軸對稱.2、已知,平分,點分別在上.(1)如圖1,若于點,于點.①利用等腰三角形“三線合一”,將補成一個等邊三角形,可得的數量關系為________.②請問:是否等于呢?如果是,請予以證明.(2)如圖2,若,則(1)中的結論是否仍然成立?若成立,請予以證明;若不成立,請說明理由.3、如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點D.(1)求∠ADC的度數;(2)求證:DC=2DB.4、如圖,在正方形網格上的一個△ABC,且每個小正方形的邊長為1(其中點A,B,C均在網格上).(1)作△ABC關于直線MN的軸對稱圖形△A'B'C';(2)在MN上畫出點P,使得PA+PC最小;(3)求出△ABC的面積.5、如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.(1)求證:AE=2CE;(2)連接CD,請判斷△BCD的形狀,并說明理由.-參考答案-一、單選題1、D【解析】【分析】分別利用矩形的判定方法、以及菱形的判定與性質和平行四邊形的判定方法分析得出答案.【詳解】解:A、有一組對邊平行且相等的四邊形是平行四邊形,錯誤;B、有一個角是直角的平行四邊形是矩形,錯誤;C、有一組鄰邊相等的平行四邊形是菱形,錯誤;D、對角線互相垂直平分的四邊形是菱形,正確;故選:D.【考點】本題主要考查了矩形的判定、以及菱形的判定與性質和平行四邊形的判定,正確把握相關判定定理是解題關鍵.2、B【解析】【詳解】解:∵PB+PC=BC,PA+PC=BC,∴PA=PB,根據線段垂直平分線定理的逆定理可得,點P在線段AB的垂直平分線上,故可判斷B選項正確.故選B.3、D【解析】【分析】根據ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【考點】本題考查了線段垂直平分線的性質,三角形內角和定理,含30度角的直角三角形的性質,余弦等,結合圖形熟練應用相關的性質及定理是解題的關鍵.4、A【解析】【分析】認真讀題,觀察圖形,根據圖形特點先確定對稱軸,再根據對稱軸找出相應的三角形.【詳解】解:如圖:與△ABC成軸對稱的三角形有:①△FCD關于CG對稱;②△GAB關于EH對稱;③△AHF關于AD對稱;④△EBD關于BF對稱;⑤△BCG關于AG的垂直平分線對稱.共5個.故選A.【考點】本題考查軸對稱的基本性質,結合了圖形的常見的變化,要根據直角三角形的特點從圖中找到有關的直角三角形再判斷是否為對稱圖形.5、C【解析】【分析】先根據已知利用SAS判定△ABD≌△ACE得出AD=AE,∠BAD=∠CAE=60°,從而推出△ADE是等邊三角形.【詳解】解:∵三角形ABC為等邊三角形,∴AB=AC,∵BD=CE,∠1=∠2,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE=60°,∴△ADE是等邊三角形.故選:C.【考點】本題考查了等邊三角形的判定和全等三角形的判定方法,掌握等邊三角形的判定和全等三角形的判定是本題的關鍵,做題時要對這些知識點靈活運用.6、D【解析】【分析】根據線段垂直平分線的性質解答即可.【詳解】解:∵在△ABC中,三角形內部的點P到三個頂點的距離相等,∴點P是三條邊垂直平分線的交點,故選:D.【考點】本題考查了線段垂直平分線的性質,熟練掌握線段垂直平分線上的點到線段的兩個端點的距離相等是解答的關鍵.7、B【解析】【分析】題目給出等腰三角形有兩條邊長為3和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】由等腰三角形的概念,得第三邊的長可能為3或6,當第三邊是3時,而3+3=6,所以應舍去;則第三邊長為6.故選B.【考點】此題考查等腰三角形的性質和三角形的三邊關系解題關鍵在于已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答.8、B【解析】【分析】結合軸對稱圖形的概念進行求解即可.【詳解】解:根據軸對稱圖形的概念可知:A、不是軸對稱圖形,故本選項錯誤;B、是軸對稱圖形,故本選項錯誤;C、不是軸對稱圖形,故本選項錯誤;D、不是軸對稱圖形,故本選項正確.故選:B.【考點】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、B【解析】【分析】先由等腰三角形的性質和三角形的內角和定理求出∠BCA,進而求得∠ACD,由作圖痕跡可知CE為∠ACD的平分線,利用角平分線定義求解即可.【詳解】∵在中,,∴,∴∠ACD=180°-∠ACB=180°-50°=130°,由作圖痕跡可知CE為∠ACD的平分線,∴,故選:B.【考點】本題考查了等腰三角形的性質、三角形的內角和定理、角平分線的定義和作法,熟練掌握等腰三角形的性質以及角平分線的尺規(guī)作圖法是解答的關鍵.10、B【解析】【分析】根據線段垂直平分線的性質得到DA=DC,根據等腰三角形的性質得到∠DAC=∠C,根據三角形內角和定理求出∠BAC,計算即可.【詳解】∵DE是AC的垂直平分線,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故選B.【考點】本題考查的是線段垂直平分線的性質、等腰三角形的性質,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.二、填空題1、12【解析】【分析】由的中垂線交于點,可得再利用的周長為22,列方程解方程可得答案.【詳解】解:的中垂線交于點,,的周長為22,故答案為:【考點】本題考查的是線段的垂直平分線的性質,掌握線段的垂直平分線的性質是解題的關鍵.2、80°或50°【解析】【分析】等腰三角形的一個外角等于100°,則等腰三角形的一個內角為80°,但已知沒有明確此角是頂角還是底角,所以應分兩種情況進行分類討論.【詳解】∵等腰三角形的一個外角等于100°,∴等腰三角形的一個內角為80°,當80°為頂角時,其他兩角都為50°、50°,當80°為底角時,其他兩角為80°、20°,所以等腰三角形的底角可以是50°,也可以是80°.答案為:80°或50°.【考點】本題考查等腰三角形的性質,當已知角沒有明確是頂角還是底角的時候,分類討論是關鍵.3、40【解析】【分析】根據等邊對等角得到,再根據三角形外角的性質得到,故,由三角形的內角和即可求解的度數.【詳解】解:∵,∴,∴,∵,∴,∴,故答案為:40.【考點】本題考查等腰三角形的性質、三角形外角的性質、三角形的內角和,熟練掌握幾何知識并靈活運用是解題的關鍵.4、105°.【解析】【分析】由平行四邊形的性質和折疊的性質,得出∠ADB=∠BDG=∠DBG,由三角形的外角性質求出∠BDG=∠DBG=∠1=25°,再由三角形內角和定理求出∠A,即可得到結果.【詳解】∵AD∥BC,∴∠ADB=∠DBG,由折疊可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案為105°.【考點】本題考查了平行四邊形的性質,折疊的性質,三角形的外角性質,三角形內角和定理.5、80°【解析】【分析】如圖,分別作P關于OM、ON的對稱點,然后連接兩個對稱點即可得到A、B兩點,由此即可得到△PAB的周長取最小值時的情況,并且求出∠APB度數.【詳解】解:如圖,分別作P關于OM、ON的對稱點P1、P2,然后連接兩個對稱點即可得到A、B兩點,∴△PAB即為所求的三角形,根據對稱性知道:∠APO=∠AP1O,∠BPO=∠BP2O,還根據對稱性知道:∠P1OP2=2∠MON,OP1=OP2,而∠MON=50°,∴∠P1OP2=100°,∴∠AP1O=∠BP2O=40°,∴∠APB=2×40°=80°.故答案為80°.6、60°【解析】【分析】利用三角形內角和定理求得∠C=90°,在Rt△ACB中,AB=2BC推出∠A=30°,從而得出∠B的度數.【詳解】根據三角形的內角和定理得,∠A+∠B+∠C=180°,∵∠A+∠B=∠C,∴∠C+∠C=180°,解得∠C=90°,在Rt△ACB中,∵AB=2BC,∴∠A=30°,∴∠B=90°-30°=60°.故答案為:60°.【考點】本題考查了三角形內角和定理的應用,含30度角的直角三角形的性質,靈活運用含30度角的直角三角形的性質是解題的關鍵.7、70°【解析】【分析】依據矩形的性質以及折疊的性質,即可得到∠DFE=∠B'EF,設∠BEF=α,則∠DFE=∠B'EF=α,根據B'E∥C'F,即可得出∠B'EF+∠C'FE=180°,進而得到∠BEF的度數.【詳解】解:∵四邊形ABCD是矩形,∴AB∥DC,∴∠BEF=∠DFE,由折疊可得,∠BEF=∠B'EF,設∠BEF=α,則∠DFE=∠B'EF=α,∵B'E∥C'F,∴∠B'EF+∠C'FE=180°,即α+α+40°=180°,解得α=70°,∴∠BEF=70°,故答案為:70°.【考點】本題考查折疊問題以及矩形的性質的運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.8、②③④【解析】【分析】通過延長EB至E',使BE=BE',連接,構造出全等三角形,再利用全等三角形的性質依次分析,可得出正確的結論是②③④.【詳解】解:如圖,延長EB至E',使BE=BE',連接;∵∠ABC=90°,∴AB垂直平分EE',∴AE=AE',∴∠1=∠2,∠3=∠5,∵∠1=,∴∠E'AE=2∠1=∠CAD,∴∠E'AC=∠EAD,

又∵AD=AC,∴,∴∠5=∠4,∠ADE=∠ACB(即②正確),∴∠3=∠4;當∠6=∠1時,∠4+∠6=∠3+∠1=90°,此時,∠AME=180°-(∠4+∠6)=90°,當∠6≠∠1時,∠4+∠6≠∠3+∠1,∠4+∠6≠90°,此時,∠AME≠90°,∴①不正確;若CD∥AB,則∠7=∠BAC,∵AD=AC,∴∠7=∠ADC,∵∠CAD+∠7+∠ADC=180°,∴,

∴∠1+∠7=90°,∴∠2+∠7=90°,∴∠2+∠BAC=90°,即∠E'AC=90°,由,∴∠EAD=∠CAE'=90°,E'C=DE,∴AE⊥AD(即③正確),DE=E'B+BE+CE=2BE+CE(即④正確);故答案為:②③④.【考點】本題綜合考查了線段的垂直平分線的判定與性質、全等三角形的判定與性質、等腰三角形的性質、平行線的性質等內容;要求學生能夠根據已知條件通過作輔助線構造出全等三角形以及能正確運用全等三角形的性質得到角或線段之間的關系,能進行不同的邊或角之間的轉換,考查了學生的綜合分析和數形結合的能力.9、9.【解析】【分析】根據等腰三角形的性質及全等三角形的判定與性質即可求解.【詳解】因為△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD△ACE(ASA),所以BD=EC,EC=9.【考點】此題主要考查等腰三角形的性質,解題的關鍵是熟知全等三角形的判定與性質.10、55°.【解析】【分析】根據直角三角形兩銳角互余得∠BAC=70°,由角平分線的定義得∠2=35°,由線段垂直平分線可得△AQM是直角三角形,故可得∠1+∠2=90°,從而可得∠1=55°,最后根據對頂角相等求出.【詳解】如圖,∵△ABC是直角三角形,∠C=90°,,,,∵是的平分線,,是的垂直平分線,是直角三角形,,,∵∠α與∠1是對頂角,.故答案為:55°.【考點】此題考查了直角三角形兩銳角互余,角平分線的定義,線段垂直平分線的性質,對頂角相等等知識,熟練掌握相關定義和性質是解題的關鍵.三、解答題1、(1)見解析;(2)A′(2,4),B′(3,1),C′(-1,-2);(3)①5;②是;△OBC與△OB′C′這兩個圖形關于y軸成軸對稱.【解析】【分析】(1)先確定A、B、C關于y軸的對稱點A′、B′、C′,然后再順次連接即可;(2)直接根據圖形讀出A′、B′、C′的坐標即可;(3)①運用△OAB所在的矩形面積減去三個三角形的面積即可;②根據圖形看△OBC與△OB′C′是否有對稱軸即可解答.【詳解】解:(1)如圖;△A′B′C′即為所求;(2)如圖可得:A′(2,4).B′(3,1).C′(-1,-2);(3)①△OAB的面積為:4×3-×3×1-×4×2-×3×1=5;②∵△OBC與△OB′C′這兩個圖形關于y軸成軸對稱∴△OBC與△OB′C′這兩個圖形關于y軸成軸對稱.【考點】本題主要考查了軸對稱變換和不規(guī)則三角形面積的求法,作出△ABC關于y軸的對稱圖形△A′B′C′以及運用拼湊法求不規(guī)則三角形的面積成為解答本題的關鍵.2、(1)①(或),理由見解析;②,理由見解析;(2)仍成立,理由見解析【解析】【分析】(1)①由題意利用角平分線的性質以及含角的直角三角形性質進行分析即可;②根據題意利用①的結論進行等量代換求解即可;(2)根據題意過點分別作的垂線,垂足分別為,進而利用全等三角形判定得出,以此進行分析即可.【詳解】解:(1)①(或)平分,,又,利用等腰三角形“三線合一”,將補成一個等邊三角形,可知②證明:由①知,同理,平分,,又,,(2)仍成立證明:過點分別作的垂線,垂足分別為平分,又由(1)中②知.【考點】本題考查等腰三角形性質以及全等三角形判定,熟練掌握角平分線的性質以及含角的直角三角形性質和全等三角形判定定理是解題的關鍵.3、(1)60°;(2)詳見解析.【解析】【分析】(1)根據等腰三角形兩底角相等求出∠B,再根據線段垂直平分線上的點到兩端點的距離相等可得AD=BD,根據等邊對等角可得∠BAD=∠B,然后根據三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解;(2)根據三角形的內角和得到∠DAC=90°,根據直角三角形的性質得到AD=CD,根據等腰三角形的性質即可得到結論.【詳解】(1)解:∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=(180°﹣120°)=30°,∵DE垂直平分AB,∴AD=BD,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論