2026屆山東省臨沂市青云鎮(zhèn)中學(xué)心中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2026屆山東省臨沂市青云鎮(zhèn)中學(xué)心中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2026屆山東省臨沂市青云鎮(zhèn)中學(xué)心中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2026屆山東省臨沂市青云鎮(zhèn)中學(xué)心中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2026屆山東省臨沂市青云鎮(zhèn)中學(xué)心中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆山東省臨沂市青云鎮(zhèn)中學(xué)心中學(xué)數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.?dāng)S一枚質(zhì)地均勻的骰子,骰子停止后,在下列四個選項中,可能性最大的是()A.點數(shù)小于4 B.點數(shù)大于4 C.點數(shù)大于5 D.點數(shù)小于52.如圖,在正方形中,以為邊作等邊,延長分別交于點,連接與相交于點,給出下列結(jié)論:①;②;③;④;其中正確的是()A.①②③④ B.②③ C.①②④ D.①③④3.如圖,O是矩形ABCD對角線AC的中點,M是AD的中點,若BC=8,OB=5,則OM的長為()A.1 B.2 C.3 D.44.《九章算術(shù)》中記載一問題如下:“今有共買雞,人出八,盈三;人出七,不足四,問人數(shù)、物價各幾何?”意思是:今有人合伙購物,每人出8錢,會多3錢;每人出7錢,又差4錢,問人數(shù)、物價各多少?設(shè)有人,買雞的錢數(shù)為,依題意可列方程組為()A. B.C. D.5.如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點、,點是軸正半軸上的一點,當(dāng)時,則點的縱坐標(biāo)是()A.2 B. C. D.6.如圖,在中,,AB=5,BC=4,點D為邊AC上的動點,作菱形DEFG,使點E、F在邊AB上,點G在邊BC上.若這樣的菱形能作出兩個,則AD的取值范圍是()A. B.C. D.7.如圖,為的直徑,點是弧的中點,過點作于點,延長交于點,若,,則的直徑長為()A.10 B.13 C.15 D.1.8.如圖,點I是△ABC的內(nèi)心,∠BIC=130°,則∠BAC=()A.60° B.65° C.70° D.80°9.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,則sinB的值等于()A. B. C. D.10.一個扇形的半徑為4,弧長為,其圓心角度數(shù)是()A. B. C. D.二、填空題(每小題3分,共24分)11.超市經(jīng)銷一種水果,每千克盈利10元,每天銷售500千克,經(jīng)市場調(diào)查,若每千克漲價1元,日銷售量減少20千克,現(xiàn)超市要保證每天盈利6000元,每千克應(yīng)漲價為______元.12.在-1、0、、1、、中任取一個數(shù),取到無理數(shù)的概率是____________13.若,則_______.14.若拋物線y=2x2+6x+m與x軸有兩個交點,則m的取值范圍是_____.15.小明制作了十張卡片,上面分別標(biāo)有1~10這是個數(shù)字.從這十張卡片中隨機(jī)抽取一張恰好能被4整除的概率是__________.16.如圖,鉛球運動員擲鉛球的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=﹣x2+x+,則該運動員此次擲鉛球的成績是_____m.17.我們定義一種新函數(shù):形如(,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個結(jié)論:①圖象與坐標(biāo)軸的交點為,和;②圖象具有對稱性,對稱軸是直線;③當(dāng)或時,函數(shù)值隨值的增大而增大;④當(dāng)或時,函數(shù)的最小值是0;⑤當(dāng)時,函數(shù)的最大值是1.其中正確結(jié)論的個數(shù)是______.18.如圖,點A、B分別在y軸和x軸正半軸上滑動,且保持線段AB=4,點D坐標(biāo)為(4,3),點A關(guān)于點D的對稱點為點C,連接BC,則BC的最小值為_____.三、解答題(共66分)19.(10分)如圖,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點O為圓心,AD為弦作⊙O.(1)尺規(guī)作圖:作出⊙O(不寫作法與證明,保留作圖痕跡);(2)求證:BC為⊙O的切線.20.(6分)已知函數(shù),請根據(jù)已學(xué)知識探究該函數(shù)的圖象和性質(zhì)過程如下:(1)該函數(shù)自變量的取值范圍為;(2)下表列出y與x的幾組對應(yīng)值,請在平面直角坐標(biāo)系中描出下列各點,并畫出函數(shù)圖象;x…-12…y…321…(3)結(jié)合所畫函數(shù)圖象,解決下列問題:①寫出該函數(shù)圖象的一條性質(zhì):;②橫、縱坐標(biāo)均為整數(shù)的點稱為整點,若直線y=-x+b的圖象與該圖象相交形成的封閉圖形(包含邊界)內(nèi)剛好有6個整點,則b的取值范圍為.21.(6分)如圖1,若二次函數(shù)的圖像與軸交于點(-1,0)、,與軸交于點(0,4),連接、,且拋物線的對稱軸為直線.(1)求二次函數(shù)的解析式;(2)若點是拋物線在一象限內(nèi)上方一動點,且點在對稱軸的右側(cè),連接、,是否存在點,使?若存在,求出點的坐標(biāo);若不存在,說明理由;(3)如圖2,若點是拋物線上一動點,且滿足,請直接寫出點坐標(biāo).22.(8分)如圖,在平面直角坐標(biāo)系中,頂點為(11,﹣)的拋物線交y軸于A點,交x軸于B,C兩點(點B在點C的左側(cè)),已知A點坐標(biāo)為(0,8).(1)求此拋物線的解析式;(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸l與⊙C有怎樣的位置關(guān)系,并給出證明;(3)連接AC,在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形,若存在,請直接寫出點P的坐標(biāo),若不存在,請說明理由.23.(8分)某商場將進(jìn)價為元的臺燈以元售出,平均每月能售出個,調(diào)查表明:這種臺燈的售價每上漲元,其銷售量就減少個.為了實現(xiàn)平均每月元的銷售利潤,這種臺燈的售價應(yīng)定為多少?這時應(yīng)進(jìn)臺燈個?如果商場要想每月的銷售利潤最多,這種臺燈的售價又將定為多少?這時應(yīng)進(jìn)臺燈多個?24.(8分)今年“五?一”節(jié)期間,紅星商場舉行抽獎促銷活動,凡在本商場購物總金額在300元以上者,均可抽一次獎,獎品為精美小禮品.抽獎辦法是:在一個不透明的袋子中裝有四個標(biāo)號分別為1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.抽獎?wù)叩谝淮蚊鲆粋€小球,不放回,第二次再摸出一個小球,若兩次摸出的小球中有一個小球標(biāo)號為“1”,則獲獎.(1)請你用樹形圖或列表法表示出抽獎所有可能出現(xiàn)的結(jié)果;(2)求抽獎人員獲獎的概率.25.(10分)如圖,在△ABC中,點E在邊AB上,點G是△ABC的重心,聯(lián)結(jié)AG并延長交BC于點D.(1)若,用向量、表示向量;(2)若∠B=∠ACE,AB=6,AC=2,BC=9,求EG的長.26.(10分)有六張完全相同的卡片,分兩組,每組三張,在組的卡片上分別畫上“√,×,√”,組的卡片上分別畫上“√,×,×”,如圖①所示.(1)若將卡片無標(biāo)記的一面朝上擺在桌上,再分別從兩組卡片中隨機(jī)各抽取一張,求兩張卡片上標(biāo)記都是“√”的概率(請用“樹形圖法”或“列表法”求解).(2)若把兩組卡片無標(biāo)記的一面對應(yīng)粘貼在一起得到三張卡片,其正、反面標(biāo)記如圖②所示,將卡片正面朝上擺在桌上,并用瓶蓋蓋住標(biāo)記.①若隨機(jī)揭開其中一個蓋子,看到的標(biāo)記是“√”的概率是多少?②若揭開蓋子,看到的卡片正面標(biāo)記是“√”后,猜想它的反面也是“√”,求猜對的概率.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】根據(jù)所有可能的的6種結(jié)果中,看哪種情況出現(xiàn)的多,哪種發(fā)生的可能性就大.【詳解】擲一枚質(zhì)地均勻的骰子,骰子停止后共有6種等可能的情況,即:點數(shù)為1,2,3,4,5,6;其中點數(shù)小于4的有3種,點數(shù)大于4的有2種,點數(shù)大于5的有1種,點數(shù)小于5的有4種,故點數(shù)小于5的可能性較大,故選:D.本題考查了等可能事件發(fā)生的概率,理解可能性的大小是關(guān)鍵.2、A【分析】根據(jù)等邊三角形、正方形的性質(zhì)求得∠ABE=30°,利用直角三角形中30°角的性質(zhì)即可判斷①;證得PC=CD,利用三角形內(nèi)角和定理即可求得∠PDC,可求得∠BPD,即可判斷②;求得∠FDP=15°,∠PBD=15°,即可證明△PDE∽△DBE,判斷③正確;利用相似三角形對應(yīng)邊成比例可判斷④.【詳解】∵△BPC是等邊三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,∴,

∴;故①正確;

∵PC=CD,∠PCD=30°,

∴∠PDC=∠CPD===75°,∴∠BPD=∠BPC+∠CPD=60°+75°=135°,故②正確;

∵∠PDC=75°,∴∠FDP=∠ADC-∠PDC=90°-75°=15°,

∵∠DBA=45°,

∴∠PBD=∠DBA-∠ABE=45°-30°=15°,

∴∠EDP=∠EBD,

∵∠DEP=∠DEP,

∴△PDE∽△DBE,故③正確;

∵△PDE∽△DBE,∴,即,故④正確;綜上:①②③④都是正確的.

故選:A.本題考查的正方形的性質(zhì),等邊三角形的性質(zhì)以及相似三角形的判定和性質(zhì),解答此題的關(guān)鍵是熟練掌握性質(zhì)和定理.3、C【分析】由O是矩形ABCD對角線AC的中點,可求得AC的長,然后運用勾股定理求得AB、CD的長,又由M是AD的中點,可得OM是△ACD的中位線,即可解答.【詳解】解:∵O是矩形ABCD對角線AC的中點,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M(jìn)是AD的中點,∴OM=CD=1.故答案為C.本題考查了矩形的性質(zhì)、直角三角形的性質(zhì)以及三角形中位線的性質(zhì),掌握直角三角形斜邊上的中線等于斜邊的一半是解題的關(guān)鍵.4、D【分析】一方面買雞的錢數(shù)=8人出的總錢數(shù)-3錢,另一方面買雞的錢數(shù)=7人出的總錢數(shù)+4錢,據(jù)此即可列出方程組.【詳解】解:設(shè)有人,買雞的錢數(shù)為,根據(jù)題意,得:.本題考查的是二元一次方程組的應(yīng)用,正確理解題意、根據(jù)買雞的總錢數(shù)不變列出方程組是解題關(guān)鍵.5、D【分析】首先過點B作BD⊥AC于點D,設(shè)BC=a,根據(jù)直線解析式得到點A、B坐標(biāo),從而求出OA、OB的長,易證△BCD≌△ACO,再根據(jù)相似三角形的對應(yīng)邊成比例得出比例式,即可解答.【詳解】解:過點B作BD⊥AC于點D,設(shè)BC=a,∵直線與軸、軸分別交于點、,∴A(-2,0),B(0,1),即OA=2,OB=1,AC=,∵,∴AB平分∠CAB,又∵BO⊥AO,BD⊥AC,∴BO=BD=1,∵∠BCD=∠ACO,∠CDB=∠COA=90°,∴△BCD≌△ACO,∴,即a:=1:2解得:a1=,a2=-1(舍去),∴OC=OB+BC=+1=,所以點C的縱坐標(biāo)是.故選:D.本題考查相似三角形的判定與性質(zhì)、角平分線的性質(zhì)的綜合運用,解題關(guān)鍵是恰當(dāng)作輔助線利用角平分線的性質(zhì).6、B【分析】因為在中只能作出一個正方形,所以要作兩個菱形則AD必須小于此時的AD,也即這是AD的最大臨界值;當(dāng)AD等于菱形邊長時,這時恰好可以作兩個菱形,這是AD最小臨界值.然后分別在這2種情形下,利用相似三角形的性質(zhì)求出AD即可.【詳解】過C作交DG于M由三角形的面積公式得即,解得①當(dāng)菱形DEFG為正方形時,則只能作出一個菱形設(shè):,為菱形,,,即,得()若要作兩個菱形,則;②當(dāng)時,則恰好作出兩個菱形設(shè):,過D作于H,由①知,,,得綜上,故選:B.本題考查了相似三角形的性質(zhì)、銳角三角函數(shù),依據(jù)圖形的特點判斷出兩個臨界值是解題關(guān)鍵.7、C【分析】連接OD交AC于點G,根據(jù)垂徑定理以及弦、弧之間的關(guān)系先得出DF=AC,再由垂徑定理及推論得出DE的長以及OD⊥AC,最后在Rt△DOE中,根據(jù)勾股定理列方程求得半徑r,從而求出結(jié)果.【詳解】解:連接OD交AC于點G,∵AB⊥DF,∴,DE=EF.又點是弧的中點,∴,OD⊥AC,∴,∴AC=DF=12,∴DE=2.設(shè)的半徑為r,∴OE=AO-AE=r-3,在Rt△ODE中,根據(jù)勾股定理得,OE2+DE2=OD2,∴(r-3)2+22=r2,解得r=.∴的直徑為3.故選:C.本題主要考查垂徑定理及其推論,弧、弦之間的關(guān)系以及勾股定理,解題的關(guān)鍵是通過作輔助線構(gòu)造直角三角形,是中考常考題型.8、D【分析】根據(jù)三角形的內(nèi)接圓得到∠ABC=2∠IBC,∠ACB=2∠ICB,根據(jù)三角形的內(nèi)角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度數(shù)即可;【詳解】解:∵點I是△ABC的內(nèi)心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故選D.本題主要考查了三角形的內(nèi)心,掌握三角形的內(nèi)心的性質(zhì)是解題的關(guān)鍵.9、C【解析】∵∠C=90°,AC=4,BC=3,∴AB=5,∴sinB=,故選C.10、C【分析】根據(jù)弧長公式即可求出圓心角的度數(shù).【詳解】解:∵扇形的半徑為4,弧長為,∴解得:,即其圓心角度數(shù)是故選C.此題考查的是根據(jù)弧長和半徑求圓心角的度數(shù),掌握弧長公式是解決此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、5或1【分析】設(shè)每千克水果應(yīng)漲價x元,得出日銷售量將減少20x千克,再由盈利額=每千克盈利×日銷售量,依題意得方程求解即可.【詳解】解:設(shè)每千克水果應(yīng)漲價x元,依題意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解這個方程,得x1=5,x2=1.答:每千克水果應(yīng)漲價5元或1元.故答案為:5或1.本題考查了一元二次方程的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程.12、【詳解】解:根據(jù)無理數(shù)的意義可知無理數(shù)有:,,因此取到無理數(shù)的概率為.故答案為:.考點:概率13、1【分析】由得到,由變形得到,再將整體代入,計算即可得到答案.【詳解】由得到,由變形得到,再將整體代入得到1.本題考查代數(shù)式求值,解題的關(guān)鍵是掌握整體代入法.14、【分析】由拋物線與x軸有兩個交點,可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=2x2+6x+m與x軸有兩個交點,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案為:m.本題考查了拋物線與x軸的交點,牢記“當(dāng)△=b2﹣4ac>0時,拋物線與x軸有2個交點”是解答本題的關(guān)鍵.15、【分析】由小明制作了十張卡片,上面分別標(biāo)有這是個數(shù)字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【詳解】解:小明制作了十張卡片,上面分別標(biāo)有這是個數(shù)字.其中能被4整除的有4,8;從這十張卡片中隨機(jī)抽取一張恰好能被4整除的概率是:.故答案為:.此題考查了概率公式的應(yīng)用.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.16、1【分析】根據(jù)鉛球落地時,高度y=0,把實際問題可理解為當(dāng)y=0時,求x的值即可.【詳解】解:在中,當(dāng)y=0時,整理得:x2-8x-20=0,(x-1)(x+2)=0,解得x1=1,x2=-2(舍去),即該運動員此次擲鉛球的成績是1m.故答案為:1.本題考查了二次函數(shù)的應(yīng)用中函數(shù)式中自變量與函數(shù)表達(dá)的實際意義,需要結(jié)合題意,取函數(shù)或自變量的特殊值列方程求解是解題關(guān)鍵.17、1【解析】由,和坐標(biāo)都滿足函數(shù),∴①是正確的;從圖象可以看出圖象具有對稱性,對稱軸可用對稱軸公式求得是直線,②也是正確的;根據(jù)函數(shù)的圖象和性質(zhì),發(fā)現(xiàn)當(dāng)或時,函數(shù)值隨值的增大而增大,因此③也是正確的;函數(shù)圖象的最低點就是與軸的兩個交點,根據(jù),求出相應(yīng)的的值為或,因此④也是正確的;從圖象上看,當(dāng)或,函數(shù)值要大于當(dāng)時的,因此⑤時不正確的;逐個判斷之后,可得出答案.【詳解】解:①∵,和坐標(biāo)都滿足函數(shù),∴①是正確的;②從圖象可知圖象具有對稱性,對稱軸可用對稱軸公式求得是直線,因此②也是正確的;③根據(jù)函數(shù)的圖象和性質(zhì),發(fā)現(xiàn)當(dāng)或時,函數(shù)值隨值的增大而增大,因此③也是正確的;④函數(shù)圖象的最低點就是與軸的兩個交點,根據(jù),求出相應(yīng)的的值為或,因此④也是正確的;⑤從圖象上看,當(dāng)或,函數(shù)值要大于當(dāng)時的,因此⑤是不正確的;故答案是:1理解“鵲橋”函數(shù)的意義,掌握“鵲橋”函數(shù)與與二次函數(shù)之間的關(guān)系;兩個函數(shù)性質(zhì)之間的聯(lián)系和區(qū)別是解決問題的關(guān)鍵;二次函數(shù)與軸的交點、對稱性、對稱軸及最值的求法以及增減性應(yīng)熟練掌握.18、1【分析】取AB的中點E,連接OE,DE,OD,依據(jù)三角形中位線定理即可得到BC=2DE,再根據(jù)O,E,D在同一直線上時,DE的最小值等于OD-OE=3,即可得到BC的最小值等于1.【詳解】解:如圖所示,取AB的中點E,連接OE,DE,OD,由題可得,D是AC的中點,∴DE是△ABC的中位線,∴BC=2DE,∵點D坐標(biāo)為(4,3),∴OD==5,∵Rt△ABO中,OE=AB=×4=2,∴當(dāng)O,E,D在同一直線上時,DE的最小值等于OD﹣OE=3,∴BC的最小值等于1,故答案為:1.本題主要考查了勾股定理,三角形三條邊的關(guān)系,直角三角形斜邊上中線的性質(zhì)以及三角形中位線定理的運用,解決問題的關(guān)鍵是掌握直角三角形斜邊上中線的性質(zhì)以及三角形中位線定理.三、解答題(共66分)19、(1)作圖見解析;(2)證明見解析.【分析】(1)因為AD是弦,所以圓心O即在AB上,也在AD的垂直平分線上,作AD的垂直平分線,與AB的交點即為所求;(2)因為D在圓上,所以只要能證明OD⊥BC就說明BC為⊙O的切線.【詳解】解:(1)如圖所示,⊙O即為所求;(2)證明:連接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD是∠BAC的角平分線,∴∠CAD=∠OAD,∴∠ODA=∠CAD,∴OD∥AC.又∵∠C=90°,∴∠ODB=90°,∴BC是⊙O的切線.本題主要考查圓的切線,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.20、(1):x>-2;(2)見詳解;(1)①當(dāng)x>-2時,y隨x的增加而減小;②2≤b<1.【分析】(1)x+2>0,即可求解;(2)描點畫出函數(shù)圖象即可;(1)①任意寫出一條性質(zhì)即可,故答案不唯一;②如圖2,當(dāng)b=2時,直線y=-x+b的圖象與該圖象相交形成的封閉圖形(包含邊界)內(nèi)剛好有6個整點(圖中空心點),即可求解【詳解】解:(1)x+2>0,解得:x>-2,故答案為:x>-2;(2)描點畫出函數(shù)圖象如下:(1)①當(dāng)x>-2時,y隨x的增加而減?。ù鸢覆晃ㄒ唬蚀鸢笧椋寒?dāng)x>-2時,y隨x的增加而減?。ù鸢覆晃ㄒ唬谌鐖D2,當(dāng)b=2時,直線y=-x+b的圖象與該圖象相交形成的封閉圖形(包含邊界)內(nèi)剛好有6個整點(圖中空心點),故2≤b<1,故答案為:2≤b<1.本題考查的是一次函數(shù)圖象與系數(shù)的關(guān)系,這種探究性題目,通常按照題設(shè)的順序逐次求解,通常比較容易.21、(1)(2)存在,(3)Q點的坐標(biāo)為或【分析】(1)根據(jù)拋物線的對稱性求出,再利用待定系數(shù)法求解即可;(2)連接OP,設(shè),根據(jù)三角形面積的關(guān)系可得,即可求出P點的坐標(biāo);(3)分兩種情況:①當(dāng)Q在BC的上方時,過C作交AB于D;②當(dāng)Q在BC的下方時,連接BQ交y軸于點E,根據(jù)全等三角形的性質(zhì)聯(lián)立方程求解即可.【詳解】(1)∵拋物線的對稱軸為直線解得;(2)連接OP設(shè)∵P在對稱軸的右側(cè);(3)①當(dāng)Q在BC的上方時,過C作交AB于D設(shè)CD的解析式為∴設(shè)BQ的解析式為解得②當(dāng)Q在BC的下方時,連接BQ交y軸于點E設(shè)BE的解析式為解得綜上所述,Q點的坐標(biāo)為或.本題考查了二次函數(shù)的綜合問題,掌握二次函數(shù)的性質(zhì)、待定系數(shù)法、三角形面積公式、一次函數(shù)的性質(zhì)、全等三角形的性質(zhì)、平行線的性質(zhì)、解方程組的方法是解題的關(guān)鍵.22、(1);(2)對稱軸l與⊙C相交,見解析;(3)P(30,﹣2)或(41,100)【分析】(1)已知拋物線的頂點坐標(biāo),可用頂點式設(shè)拋物線的解析式,然后將A點坐標(biāo)代入其中,即可求出此二次函數(shù)的解析式;(2)根據(jù)拋物線的解析式,易求得對稱軸l的解析式及B、C的坐標(biāo),分別求出直線AB、BD、CE的解析式,再求出CE的長,與到拋物線的對稱軸的距離相比較即可;(3)分∠ACP=90°、∠CAP=90°兩種情況,分別求解即可.【詳解】解:(1)設(shè)拋物線為y=a(x﹣11)2﹣,∵拋物線經(jīng)過點A(0,8),∴8=a(0﹣11)2﹣,解得a=,∴拋物線為y==;(2)設(shè)⊙C與BD相切于點E,連接CE,則∠BEC=∠AOB=90°.∵y==0時,x1=11,x2=1.∴A(0,8)、B(1,0)、C(11,0),∴OA=8,OB=1,OC=11,BC=10;∴AB===10,∴AB=BC.∵AB⊥BD,∴∠ABC=∠EBC+90°=∠OAB+90°,∴∠EBC=∠OAB,∴,∴△OAB≌△EBC(AAS),∴OB=EC=1.設(shè)拋物線對稱軸交x軸于F.∵x=11,∴F(11,0),∴CF=11﹣11=5<1,∴對稱軸l與⊙C相交;(3)由點A、C的坐標(biāo)得:直線AC的表達(dá)式為:y=﹣x+8,①當(dāng)∠ACP=90°時,則直線CP的表達(dá)式為:y=2x﹣32,聯(lián)立直線和拋物線方程得,解得:x=30或11(舍去),故點P(30,﹣2);當(dāng)∠CAP=90°時,同理可得:點P(41,100),綜上,點P(30,﹣2)或(41,100);本題考查了二次函數(shù)解析式的確定、相似三角形的判定和性質(zhì)、直線與圓的位置關(guān)系、圖形面積的求法等知識,正確表示出S△PAC=S△AQP+S△CQP是解題關(guān)鍵.23、(1)這種臺燈的售價應(yīng)定為元或元,這時應(yīng)進(jìn)臺燈個或個;商場要想每月的銷售利潤最多,這種臺燈的售價定為元,這時應(yīng)進(jìn)臺燈個.【分析】(1)設(shè)這種臺燈的售價應(yīng)定為x元,根據(jù)題意得:利潤

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論