




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖①,已知,用尺規(guī)作它的角平分線.如圖②,步驟如下:第一步:以B為圓心,以a為半徑畫弧,分別交射線,于點D,E;第二步:分別以D,E為圓心,以b為半徑畫弧,兩弧在內(nèi)部交于點P;第三步;畫射線,射線即為所求.下列敘述不正確的是(
)A. B.作圖的原理是構(gòu)造三角形全等C.由第二步可知, D.的長2、如圖,在中,點D是BC邊上一點,已知,,CE平分交AB于點E,連接DE,則的度數(shù)為(
)A. B. C. D.3、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(點D與A,B不重合),連結(jié)CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點F,連接BE.當(dāng)AD=BF時,∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°4、下列各組的兩個圖形屬于全等圖形的是(
)A. B. C. D.5、如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內(nèi)心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.6、如圖,在中,,的平分線交于點E,于點D,若的周長為12,,則的周長為(
)A.9 B.8 C.7 D.67、如圖是用直尺和圓規(guī)作一個角等于已知角的示意圖,說明的依據(jù)是(
)A. B. C. D.8、如圖,點O是△ABC中∠BCA,∠ABC的平分線的交點,已知△ABC的面積是12,周長是8,則點O到邊BC的距離是(
)A.1 B.2C.3 D.49、如圖,△ABC與△DEF是全等三角形,則圖中的相等線段有(
)A.1 B.2 C.3 D.410、如圖,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,,,則,滿足關(guān)系(
)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在和中,,,直線交于點M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號).2、如圖,在中,,點,都在邊上,,若,則的長為_______.3、要測量河兩岸相對的兩點A,B間的距離(AB垂直于河岸BF),先在BF上取兩點C,D,使CD=CB,再作出BF的垂線DE,且使A,C,E三點在同一條直線上,如圖,可以得△EDC≌△ABC,所以ED=AB.因此測得ED的長就是AB的長.判定△EDC≌△ABC的理由是____________.4、如圖,AB=DC,BF=CE,需要補充一個條件,就能使△ABE≌△DCF,下面幾個答案:①AE=DF,②AE∥DF;③AB∥DC,④∠A=∠D.其中正確的是_____.5、如圖,在△ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,,則BF=_______.6、已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.7、如圖,在△ABC中,∠ACB的平分線交AB于點D,
DE⊥AC于點E,F為BC上一點,若DF=AD,△ACD與△CDF的面積分別為10和4,則△AED的面積為______8、如圖所示的圖案是由全等的圖形拼成的,其中AD=0.5,BC=1,則AF=______.9、如圖,在△ABC中,AD⊥BC于點D,過A作AEBC,且AE=AB,AB上有一點F,連接EF.若EF=AC,CD=4BD,則=_____.10、如圖,平分,.填空:因為平分,所以________.從而________.因此________.三、解答題(5小題,每小題6分,共計30分)1、正方形ABCD中,E為BC上的一點,F(xiàn)為CD上的一點,,求的度數(shù).2、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.3、如圖,在中,D是邊上的點,,垂足分別為E,F(xiàn),且.求證:.4、如圖,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于點E,點F在AC上,BD=DF.(1)求證:CF=EB;(2)若AB=14,AF=8,求CF的長.5、如圖,在△ABC中,BC=AB,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF.(1)求證:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度數(shù).-參考答案-一、單選題1、D【解析】【分析】根據(jù)用尺規(guī)作圖法畫已知角的角平分線的基本步驟判斷即可【詳解】解:A、∵以a為半徑畫弧,∴,故正確B、根據(jù)作圖步驟可知BD=BE,PD=PE,BP=BP,∴△BDP≌△BEP(SSS),故正確C、∵分別以D,E為圓心,以b為半徑畫弧,兩弧在內(nèi)部交于點P,∴,故正確D、分別以D,E為圓心,以b為半徑畫弧,其中,否則兩個圓弧沒有交點,故錯誤故選:D【考點】本題考查用尺規(guī)作圖法畫已知角的角平分線及理論依據(jù),熟練尺規(guī)作圖的基本步驟是關(guān)鍵2、B【解析】【分析】過點E作于M,于N,于H,如圖,先計算出,則AE平分,根據(jù)角平分線的性質(zhì)得,再由CE平分得到,則,于是根據(jù)角平分線定理的逆定理可判斷DE平分,再根據(jù)三角形外角性質(zhì)解答即可.【詳解】解:過點E作于M,于N,于H,如圖,∵,,∴,∴平分,∴,∵平分,∴,∴,∴平分,∴,∵由三角形外角可得:,,∴,而,∴.故選:B.【考點】本題考查了角平分線的性質(zhì)和判定定理,三角形的外角性質(zhì)定理,解決本題的關(guān)鍵是運用角平分線定理的逆定理證明DE平分.3、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準(zhǔn)確判定三角形全等,從而利用全等三角形性質(zhì)解決相應(yīng)的問題.4、D【解析】【分析】根據(jù)全等圖形的定義,逐一判斷選項,即可.【詳解】解:A、兩個圖形不能完全重合,不是全等圖形,不符合題意,B.兩個圖形不能完全重合,不是全等圖形,符合題意,C.兩個圖形不能完全重合,不是全等圖形,不符合題意,D.兩個圖形能完全重合,是全等圖形,不符合題意,故選D.【考點】本題主要考查全等圖形的定義,熟練掌握“能完全重合的兩個圖形,是全等圖形”是解題的關(guān)鍵.5、A【解析】【分析】延長FE交BC于點D,作EG⊥AB、作EH⊥AC,由EF∥AC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠GAE=∠HAE,從而知四邊形BDEG是正方形,再證△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,設(shè)BD=BG=x,則AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再證△CDF∽△CBA,可得,據(jù)此得出EF=DF-DE=.【詳解】解:如圖,延長FE交BC于點D,作EG⊥AB于點G,作EH⊥AC于點H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四邊形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四邊形BDEG是正方形,在△GAE和△HAE中,∵,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,設(shè)BD=BG=x,則AG=AH=6﹣x、CD=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴,即,解得:,則EF=DF﹣DE=,故選A【考點】本題主要考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)及正方形的判定與性質(zhì),熟練掌握角平分線的性質(zhì)和正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.6、D【解析】【分析】通過證明得到、,的周長,即可求解.【詳解】解:∵平分∴,又∵∴又∵∴(AAS)∴、,的周長為,故選:D,【考點】此題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握全等三角形的判定方法與性質(zhì),以及線段之間的等量關(guān)系.7、B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D'.【詳解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選B.【考點】本題主要考查了尺規(guī)作圖—作已知角相等的角,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.8、C【解析】【分析】過點O作OE⊥AB于E,OF⊥AC于F,連接OA,根據(jù)角平分線的性質(zhì)得:OE=OF=OD然后根據(jù)△ABC的面積是12,周長是8,即可得出點O到邊BC的距離.【詳解】如圖,過點O作OE⊥AB于E,OF⊥AC于F,連接OA.∵點O是∠ABC,∠ACB平分線的交點,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=AB·OE+BC·OD+AC·OF=×OD×(AB+BC+AC)=×OD×8=12OD=3故選:C【考點】此題主要考查了角平分線的性質(zhì)以及三角形面積求法,角的平分線上的點到角的兩邊的距離相等,正確表示出三角形面積是解題關(guān)鍵.9、D【解析】【分析】全等三角形的對應(yīng)邊相等,據(jù)此可得出AB=DE,AC=DF,BC=EF;再根據(jù)BC-EC=EF-EC,可得出一組線段相等,據(jù)此找出組數(shù),問題可解.【詳解】∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BC-EC=EF-EC,即BE=CF.故共有四組相等線段.故選D.【考點】本題主要考查全等三角形的性質(zhì),全等三角形的對應(yīng)邊相等.10、C【解析】【分析】根據(jù)△△,證得,=,再利用∥BC得到=,再根據(jù)三角形內(nèi)角和定理即可得到結(jié)論.【詳解】∵△△,∴,∠ACB=,∴,=,∵∥BC,∴=,∴,故選:C.【考點】此題考查旋轉(zhuǎn)圖形的性質(zhì),等腰三角形的性質(zhì),兩直線平行內(nèi)錯角相等,三角形的內(nèi)角和定理.二、填空題1、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對應(yīng)高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對應(yīng)高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯誤;正確的個數(shù)有3個;故答案為:①②③.【考點】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識,證明三角形全等是解題的關(guān)鍵.2、9.【解析】【分析】根據(jù)等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì)即可求解.【詳解】因為△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD△ACE(ASA),所以BD=EC,EC=9.【考點】此題主要考查等腰三角形的性質(zhì),解題的關(guān)鍵是熟知全等三角形的判定與性質(zhì).3、ASA【解析】【分析】由已知可以得到∠ABC=∠BDE=90°,又CD=BC,∠ACB=∠DCE,由此根據(jù)角邊角即可判定△EDC≌△ABC.【詳解】∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故答案為ASA【考點】本題考查了全等三角形的判定方法;需注意根據(jù)垂直定義得到的條件,以及隱含的對頂角相等,觀察圖形,找到隱含條件并熟練掌握全等三角形的判定定理是解題關(guān)鍵.4、①③.【解析】【分析】先求出BE=CF,根據(jù)平行線的性質(zhì)得出∠AEB=∠DFC,再根據(jù)全等三角形的判定定理推出即可.【詳解】∵BF=CE,∴BF+EF=CE+EF,即BE=CF,①在△ABE和△DCF中,,∴△ABE≌△DCF(SSS),故①正確;②∵AE∥DF,∴∠AEB=∠DFC,根據(jù)AB=CD,BE=CF和∠AEB=∠DFC不能推出△ABE≌△DCF,故②錯誤;③∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),故③正確;④根據(jù)AB=CD,BE=CF和∠A=∠D不能推出△ABE≌△DCF,故④錯誤.故答案為:①③.【考點】本題考查了全等三角形的判定問題,掌握全等三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.5、或【解析】【分析】延長AD至G,使DG=AD,連接BG,可證明,則BG=AC,,根據(jù)AE=EF,得到,可證出,即得出AC=BF,從而得出BF的長.【詳解】解:如圖,延長AD至G,使DG=AD,連接BG,在和中,∴∴BG=AC,,又∵AE=EF,∴,又∵,∴,∴,∴BG=BF,∴AC=BF,又∵BE=7CE,AE=,∴BF+EF=,即BF+=,解得BF=.故答案為:【考點】本題考查了全等三角形的判定和性質(zhì),證明線段相等,一般轉(zhuǎn)化為證明三角形全等,正確地作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.6、4.【解析】【分析】過點D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關(guān)鍵.7、3【解析】【分析】如圖(見解析),過點D作,根據(jù)角平分線的性質(zhì)可得,再利用三角形全等的判定定理得出,從而有,最后根據(jù)三角形面積的和差即可得出答案.【詳解】如圖,過點D作平分,又則解得故答案為:3.【考點】本題考查了角平分線的性質(zhì)、直角三角形全等的判定定理等知識點,通過作輔助線,構(gòu)造兩個全等的三角形是解題關(guān)鍵.8、6【解析】【分析】由圖形知,所示的圖案是由梯形ABCD和七個與它全等的梯形拼接而成,根據(jù)全等則重合的性質(zhì)求解即可.【詳解】解:由題可知,圖中有8個全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6.故答案為:6.【考點】考查了全等圖形的性質(zhì),本題利用了全等形圖形一定重合的性質(zhì)求解,做題的關(guān)鍵是找準(zhǔn)相互重合的對應(yīng)邊.9、【解析】【分析】在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,∵AD⊥BC于點D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點】此題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì)、有關(guān)面積比問題的求解等知識與方法,正確地作出所需要的輔助線是解題的關(guān)鍵.10、
【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由內(nèi)錯角相等可以得出兩直線平行.【詳解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(內(nèi)錯角相等,兩直線平行).故答案為:∠CAB,∠CAB,DC.【考點】本題考查了平行線的判定定理以及角平分線的定義,解題的關(guān)鍵是找出∠CAB=∠2.解決該類題型只需牢牢掌握平行線的判定定理即可.三、解答題1、45°【解析】【分析】延長EB使得BG=DF,易證△ABG≌△ADF(SAS)可得AF=AG,進而求證△AEG≌△AEF可得∠EAG=∠EAF,再求出∠EAG+∠EAF=90°即可解題.【詳解】解:如圖,延長EB到點G,使得,連接AG.在正方形ABCD中,,,.在和中,,,,.又,在和中,,,.,,,.【考點】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),作出輔助線構(gòu)造出全等三角形是解決此題的關(guān)鍵.2、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年國家電投廣東公司校園招聘考前自測高頻考點模擬試題及答案詳解1套
- 土地使用合同3篇
- 2025國家農(nóng)業(yè)農(nóng)村部食物與營養(yǎng)發(fā)展研究所綜合辦公室助理招聘4人模擬試卷附答案詳解(黃金題型)
- 2025年寧波市中醫(yī)院公開招聘派遣制護士20人考前自測高頻考點模擬試題附答案詳解(考試直接用)
- 2025年本地網(wǎng)傳輸系統(tǒng)合作協(xié)議書
- 2025年二異丙胺項目建議書
- 2025遼寧大連醫(yī)科大學(xué)附屬第一醫(yī)院招聘(截止11.30)模擬試卷及1套完整答案詳解
- 2025年長慶油田分公司春季招聘(50人)模擬試卷(含答案詳解)
- 2025年延邊大學(xué)急需緊缺教師崗位招聘(3號)(47人)考前自測高頻考點模擬試題及答案詳解一套
- 2025貴州黔西南州交通建設(shè)發(fā)展中心招聘公益性崗位工作人員考前自測高頻考點模擬試題及答案詳解(網(wǎng)校專用)
- 2025-2026學(xué)年高一上學(xué)期第一次月考英語試卷(北師大版)
- 消費者畫像分析報告2025年寵物用品行業(yè)消費者行為研究
- 2025山東菏澤魯西新區(qū)招聘城市社區(qū)工作者招聘80人筆試參考題庫附答案解析
- 市容安全培訓(xùn)課件
- 2025中國人民財產(chǎn)保險股份有限公司民樂支公司招聘14人筆試參考題庫附帶答案詳解
- 2025扶梯裝潢服務(wù)合同范本大全
- 肺癌分子病理診斷的解讀
- 2025年招標(biāo)采購從業(yè)人員考試(招標(biāo)采購專業(yè)實務(wù)初級)在線復(fù)習(xí)題庫及答案
- 2025云南紅河紅家眾服經(jīng)營管理有限公司社會招聘工作人員8人筆試參考題庫附帶答案詳解
- 鐵路相關(guān)課件
- 中國工商銀行2026年度校園招聘考試參考題庫及答案解析
評論
0/150
提交評論