河北石家莊市第二十三中7年級數學下冊第四章三角形專題測評試題(含答案解析)_第1頁
河北石家莊市第二十三中7年級數學下冊第四章三角形專題測評試題(含答案解析)_第2頁
河北石家莊市第二十三中7年級數學下冊第四章三角形專題測評試題(含答案解析)_第3頁
河北石家莊市第二十三中7年級數學下冊第四章三角形專題測評試題(含答案解析)_第4頁
河北石家莊市第二十三中7年級數學下冊第四章三角形專題測評試題(含答案解析)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北石家莊市第二十三中7年級數學下冊第四章三角形專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,在5×5的正方形網格中,△ABC的三個頂點都在格點上,則與△ABC有一條公共邊且全等(不與△ABC重合)的格點三角形(頂點都在格點上的三角形)共有()A.3個 B.4個 C.5個 D.6個2、如圖,ABC≌DEF,點B、E、C、F在同一直線上,若BC=7,EC=4,則CF的長是()A.2 B.3 C.4 D.73、如果一個三角形的兩邊長分別為5cm和8cm,則第三邊長可能是()A.2cm B.3cm C.12cm D.13cm4、尺規(guī)作圖:作角等于已知角.示意圖如圖所示,則說明的依據是()A.SSS B.SAS C.ASA D.AAS5、如圖,已知,要使,添加的條件不正確的是()A. B. C. D.6、下列條件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,AC=DF B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,BC=EF,∠A=∠E7、如圖,在和中,,,,,連接,交于點,連接.下列結論:①;②;③平分;④平分.其中正確的個數為()A.1個 B.2個 C.3個 D.4個8、已知三角形的兩邊長分別為和,則下列長度的四條線段中能作為第三邊的是()A. B. C. D.9、如圖,在△ABC中,BC邊上的高為()A.AD B.BE C.BF D.CG10、一個三角形的兩邊長分別是3和7,且第三邊長為整數,這樣的三角形周長最大的值為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.它們運動的時間為設點的運動速度為,若使得與全等,則的值為______.2、如圖,已知AB=3,AC=CD=1,∠D=∠BAC=90°,則△ACE的面積是_____.3、如圖,點F,A,D,C在同一條直線上,,,,則AC等于_____.4、如圖,點,在直線上,且,且,過,,分別作,,,若,,,則的面積是______.5、如圖,∠AOB=90°,OA=OB,直線l經過點O,分別過A、B兩點作AC⊥l于點C,BD⊥l于點D,若AC=5,BD=3,則CD=_______.6、如圖,在△中,已知點分別為的中點,若△的面積為,則陰影部分的面積為_________7、如圖,∠C=∠D=90°,AC=AD,請寫出一個正確的結論________.8、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.9、如圖,在中,D、E分別為AC、BC邊上一點,AE與BD交于點F.已知,,且的面積為60平方厘米,則的面積為______平方厘米;如果把“”改為“”其余條件不變,則的面積為______平方厘米(用含n的代數式表示).10、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.三、解答題(6小題,每小題10分,共計60分)1、如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點為射線CB上一動點,連結AE,作AF⊥AE且AF=AE.(1)如圖1,過F點作FD⊥AC交AC于D點,求證:FD=BC;(2)如圖2,連結BF交AC于G點,若AG=3,CG=1,求證:E點為BC中點.(3)當E點在射線CB上,連結BF與直線AC交子G點,若BC=4,BE=3,則.(直接寫出結果)2、如圖,在△ABC中,AB=AC,∠BAC=30°,點D是△ABC內一點,DB=DC,∠DCB=30°,點E是BD延長線上一點,AE=AB.(1)求∠ADB的度數;(2)線段DE,AD,DC之間有什么數量關系?請說明理由.(提示:在線段DE上截取線段EM=BD,連接線段AM或者在線段DE上截取線段DM=AD連接線段AM).3、如圖,M是線段AB上的一點,ED是過點M的一條線段,連接AE、BD,過點B作BF∥AE交ED于點F,且EM=FM.(1)求證:AE=BF.(2)連接AC,若∠AEC=90°,∠CAE=∠DBF,CD=4,求EM的長.4、如圖,在△ABC中,D是邊AB上一點,E是邊AC的中點,過點C作交DE的延長線于點F.(1)求證:△ADE≌△CFE;(2)若AB=AC,CE=5,CF=7,求DB的長.5、如圖,直角坐標系中,點B(a,0),點C(0,b),點A在第一象限.若a,b滿足(a?t)2+|b?t|=0(t>0).(1)證明:OB=OC;(2)如圖1,連接AB,過A作AD⊥AB交y軸于D,在射線AD上截取AE=AB,連接CE,F(xiàn)是CE的中點,連接AF,OA,當點A在第一象限內運動(AD不過點C)時,證明:∠OAF的大小不變;(3)如圖2,B′與B關于y軸對稱,M在線段BC上,N在CB′的延長線上,且BM=NB′,連接MN交x軸于點T,過T作TQ⊥MN交y軸于點Q,當t=2時,求點Q的坐標.6、如圖,點D在AC上,BC,DE交于點F,,,.(1)求證:;(2)若,求∠CDE的度數.-參考答案-一、單選題1、C【分析】根據全等三角形的性質及判定在圖中作出符合條件的三角形即可得出結果.【詳解】解:如圖所示:與BC邊重合且與全等的三角形有:,,,與AC邊重合且與全等的三角形有:,與AB邊重合且與全等的三角形有:,共有5個三角形,故選:C.【點睛】題目主要考查全等三角形的判定和性質,熟練掌握全等三角形的判定和性質定理是解題關鍵.2、B【分析】根據全等三角形的性質可得,根據即可求得答案.【詳解】解:ABC≌DEF,點B、E、C、F在同一直線上,BC=7,EC=4,故選B【點睛】本題考查了全等三角形的性質,掌握全等三角形的性質是解題的關鍵.3、C【分析】根據兩邊之和大于第三邊,兩邊之差小于第三邊可求得結果【詳解】解:設第三邊長為c,由題可知,即,所以第三邊可能的結果為12cm故選C【點睛】本題主要考查了三角形的性質中三角形的三邊關系知識點4、A【分析】利用基本作圖得到OD=OC=OD′=OC′,CD=C′D′,則根據全等三角形的判定方法可根據“SSS”可判斷△OCD≌△O′C′D′,然后根據全等三角形的性質得到∠A′OB′=∠AOB.【詳解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根據“SSS”可判斷△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故選:A.【點睛】本題考查了作圖﹣基本作圖和全等三角形的判定與性質,解題關鍵是熟練掌握基本作圖和全等三角形的判定定理.5、D【分析】已知條件AB=AC,還有公共角∠A,然后再結合選項所給條件和全等三角形的判定定理進行分析即可.【詳解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此選項不合題意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此選項不合題意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此選項不合題意;D、添加BE=CD不能判定△ABE≌△ACD,故此選項符合題意;故選:D.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解題關鍵.6、A【分析】根據全等三角形的判定方法,對各選項分別判斷即可得解.【詳解】解:A、∠A=∠D,∠B=∠E,AC=DF,根據AAS可以判定,故此選項符合題意;B、∠A=∠E,AB=EF,∠B=∠D,AB與EF不是對應邊,不能判定,故此選項不符合題意;C、∠A=∠D,∠B=∠E,∠C=∠F,沒有邊對應相等,不可以判定,故此選項不符合題意;D、AB=DE,BC=EF,∠A=∠E,有兩邊對應相等,一對角不是對應角,不可以判定,故此選項不符合題意;故選A.【點睛】本題考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.7、C【分析】由全等三角形的判定及性質對每個結論推理論證即可.【詳解】∵∴∴又∵,∴∴故①正確∵∴由三角形外角的性質有則故②正確作于,于,如圖所示:則°,在和中,,∴,∴,在和中,∴,∴∴平分故④正確假設平分則∵∴即由④知又∵為對頂角∴∴∴∴在和中,∴即AB=AC又∵故假設不符,故不平分故③錯誤.綜上所述①②④正確,共有3個正確.故選:C.【點睛】本題考查了全等三角形的判定及性質,靈活的選擇全等三角形的判定的方法是解題的關鍵,從判定兩個三角形全等的方法可知,要判定兩個三角形全等,需要知道這兩個三角形分別有三個元素(其中至少一個元素是邊)對應相等,這樣就可以利用題目中的已知邊角迅速、準確地確定要補充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個三角形全等的思路.8、C【分析】根據三角形的三邊關系可得,再解不等式可得答案.【詳解】解:設三角形的第三邊為,由題意可得:,即,故選:C.【點睛】本題主要考查了三角形的三邊關系,解題的關鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.9、A【分析】根據三角形的高線的定義解答.【詳解】解:根據三角形的高的定義,AD為△ABC中BC邊上的高.故選:A.【點睛】本題主要考查了三角形的高的定義:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做三角形的高,熟記概念是解題的關鍵.10、C【分析】先根據三角形的三邊關系定理求得第三邊的取值范圍;再根據第三邊是整數,從而求得周長最大時,對應的第三邊的長.【詳解】解:設第三邊為a,根據三角形的三邊關系,得:7-3<a<3+7,即4<a<10,∵a為整數,∴a的最大值為9,則三角形的最大周長為9+3+7=19.故選:C.【點睛】本題考查了三角形的三邊關系:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.二、填空題1、或【分析】分兩種情形:①當≌時,可得:;②當≌時,,根據全等三角形的性質分別求解即可.【詳解】解:①當≌時,可得:,運動時間相同,,的運動速度也相同,;②當≌時,,,,,故答案為:或.【點睛】本題考查全等三角形的性質,路程、速度、時間之間的關系等知識,解題的關鍵是理解題意,靈活運用所學知識進行分類解決問題.2、##【分析】先根據三角形全等的判定定理證出,再根據全等三角形的性質可得,然后利用三角形的面積公式即可得.【詳解】解:在和中,,,,則的面積是,故答案為:.【點睛】本題考查了三角形全等的判定定理與性質,熟練掌握三角形全等的判定方法是解題關鍵.3、6.5【分析】由全等三角形的性質可得到AC=DF,從而推出AF=CD,再由,,求出,則.【詳解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵,,∴,∴,∴,故答案為:6.5.【點睛】本題主要考查了全等三角形的性質,線段的和差,解題的關鍵在于能夠熟練掌握全等三角形的性質.4、15【分析】根據AAS證明△EFA≌△AGB,△BGC≌△CHD,再根據全等三角形的性質以及三角形的面積公式求解即可.【詳解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可證△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案為:15.【點睛】本題考查了三角形全等的性質和判定,解題的關鍵是靈活運用所學知識解決問題.5、2【分析】首先根據同角的余角相等得到∠A=∠BOD,然后利用AAS證明△ACO≌△ODB,根據全等三角形對應邊相等得出AC=OD=5,OC=BD=3,根據線段之間的數量關系即可求出CD的長度.【詳解】解:∵AC⊥l于點C,BD⊥l于點D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案為:2.【點睛】此題考查了全等三角形的性質和判定,同角的余角相等,解題的關鍵是根據題意證明△ACO≌△ODB.6、1【分析】根據三角形的中線把三角形分成兩個面積相等的三角形解答.【詳解】解:∵點E是AD的中點,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×4=2cm2,∴S△BCE=S△ABC=×4=2cm2,∵點F是CE的中點,∴S△BEF=S△BCE=×2=1cm2.故答案為:1.【點睛】本題考查了三角形的面積,主要利用了三角形的中線把三角形分成兩個面積相等的三角形,原理為等底等高的三角形的面積相等.7、BC=BD【分析】根據HL證明△ACB和△ADB全等解答即可.【詳解】解:在Rt△ACB和Rt△ADB中,,∴△ACB≌△ADB(HL),∴BC=BD,故答案為:BC=BD(答案不唯一).【點睛】此題考查全等三角形的判定和性質,關鍵是根據HL證明△ACB和△ADB全等解答.8、【分析】連接CP.設△CPE的面積是x,△CDP的面積是y.根據BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據三角形的面積公式求得三角形的面積之間的關系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.9、6【分析】連接CF,依據AD=CD,BE=2CE,且△ABC的面積為60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,設S△ADF=S△CDF=x,依據S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面積為6平方厘米;當BE=nCE時,運用同樣的方法即可得到△ADF的面積.【詳解】如圖,連接CF,∵AD=CD,BE=2CE,且△ABC的面積為60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,設S△ADF=S△CDF=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面積為6平方厘米;當BE=nCE時,S△AEC=,設S△AFD=S△CFD=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面積為平方厘米;故答案為:【點睛】本題主要考查了三角形的面積的計算,解決問題的關鍵是作輔助線,根據三角形之間的面積關系得出結論.解題時注意:三角形的中線將三角形分成面積相等的兩部分.10、4【分析】根據題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據路程等于速度乘以時間求得的長,根據全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設運動時間為,且AC=4m,,當時則,即,解得當時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質,根據全等的性質列出方程是解題的關鍵.三、解答題1、(1)證明見解析;(2)證明見解析;(3)或【分析】(1)證明△AFD≌△EAC,根據全等三角形的性質得到DF=AC,等量代換證明結論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長,得到答案;(3)過F作FD⊥AG的延長線交于點D,根據全等三角形的性質得到CG=GD,AD=CE=7,代入計算即可.【詳解】(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點為BC中點;(3)當點E在CB的延長線上時,過F作FD⊥AG的延長線交于點D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴AG=CG+AC=5.5,∴,同理,當點E在線段BC上時,AG=AC-CG+=2.5,∴,故答案為:或.【點睛】本題考查的是全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.2、(1)∠ADB的度數為.(2),證明見解析.【分析】(1)利用已知條件,先證明,再通過全等三角形的性質,求解,最后利用三角形內角和為,即可求出∠ADB的度數.(2)在線段DE上截取線段DM=AD連接線段AM,證明,進而得到,最后即可證得結論成立.【詳解】(1)解:,為等腰三角形,,,,,.,.在中,..(2)解:,證明:如圖所示:在線段DE上截取線段DM=AD,并連接線段AM,,,是等邊三角形,,,,,,,,,.【點睛】本題主要是考查了三角形的全等以及等腰三角形的性質,正確找到判定三角形全等的條件,并利用其性質證明角相等或邊相等,是解決本題的關鍵,另外,證明邊長之間的關系,一般會在較長的邊上進行截取,這個做題技巧,需要注意.3、(1)見解析;(2)2【分析】(1)根據平行線的性質和全等三角形的判定證明△AME≌△BMF即可證得結論;(2)由△AME≌△BMF證得AE=BF,EM=FM,∠BFM=∠AEC=90°,根據全等三角形的判定證明△AEC≌△BFD,則有EC=FD,即EF=CD=4,即可求解.【詳解】解:(1)∵BF∥AE,∴∠EAM=∠FBM,又∠AME=∠BMF,EM=FM,∴△AME≌△BMF(ASA),∴AE=BF;(2)∵△AME≌△BMF,∴AE=BF,EM=FM,∠BFM=∠AEC=90°,∴∠AEC=∠BFD=90°,又∠CAE=∠DBF,∴△AEC≌△BFD(ASA),∴EC=FD,即EF=CD=4,∴EM=EF=2.【點睛】本題考查平行線的性質、全等三角形的判定與性質,熟練掌握全等三角形的判定與性質是解答的關鍵.4、(1)見解析;(2)DB=3.【分析】(1)先證明再證明從而可得結論;(2)利用全等三角形的性質證明再求解從而可得答案.【詳解】證明:(1)E是邊AC的中點,△ADE≌△CFE;(2)△ADE≌△CFE,CE=5,CF=7,AB=AC,【點睛】本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論