




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年北京市西城區(qū)回民學校數學高三第一學期期末學業(yè)質量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.2.設正項等比數列的前n項和為,若,,則公比()A. B.4 C. D.23.已知符號函數sgnxf(x)是定義在R上的減函數,g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]4.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.5.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁6.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①以為直徑的圓與拋物線準線相離;②直線與直線的斜率乘積為;③設過點,,的圓的圓心坐標為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③7.設是虛數單位,則“復數為純虛數”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件8.設a=log73,,c=30.7,則a,b,c的大小關系是()A. B. C. D.9.復數的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.對于定義在上的函數,若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數 B.在上是增函數C.不是函數的最小值 D.對于,都有11.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形12.設i為數單位,為z的共軛復數,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現有一善織布的女子,從第2天開始,每天比前一天多織相同數量的布,第一天織了5尺布,現在一個月(按30天計算)共織布390尺.”則每天增加的數量為____尺,設該女子一個月中第n天所織布的尺數為,則______.14.設,則除以的余數是______.15.已知數列的各項均為正數,滿足,.,若是等比數列,數列的通項公式_______.16.已知點是雙曲線漸近線上的一點,則雙曲線的離心率為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,若.(1)求角的大小;(2)若,為外一點,,求四邊形面積的最大值.18.(12分)已知等比數列是遞增數列,且.(1)求數列的通項公式;(2)若,求數列的前項和.19.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.20.(12分)為提供市民的健身素質,某市把四個籃球館全部轉為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數如圖,用分層抽樣的方法從四場館的使用場數中依次抽取共25場,在中隨機取兩數,求這兩數和的分布列和數學期望;(2)設四個籃球館一個月內各館使用次數之和為,其相應維修費用為元,根據統(tǒng)計,得到如下表的數據:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據①的結論,試估計這四個籃球館月惠值最大時的值參考數據和公式:,21.(12分)某機構組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據自己的喜愛程度對其排序,然后由家長猜測小孩的排序結果.設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數字的一種排列.定義隨機變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習慣的了解程度.(1)若參與游戲的家長對小孩的飲食習慣完全不了解.(?。┣笏麄冊谝惠営螒蛑校瑢λ姆N食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細計算過程);(2)若有一組小孩和家長進行來三輪游戲,三輪的結果都滿足X<4,請判斷這位家長對小孩飲食習慣是否了解,說明理由.22.(10分)某藝術品公司欲生產一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內接等腰三角形繞底邊上的高所在直線旋轉180°而成,如圖2.已知圓的半徑為,設,圓錐的側面積為.(1)求關于的函數關系式;(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求取得最大值時腰的長度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.2.D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數列得,∴,故選:D.本題主要考查等比數列的性質的應用,屬于基礎題.3.A【解析】
根據符號函數的解析式,結合f(x)的單調性分析即可得解.【詳解】根據題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數,當x>0時,x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時sgn[g(x)]=1,當x=0時,x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時sgn[g(x)]=0,當x<0時,x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.此題考查函數新定義問題,涉及函數單調性辨析,關鍵在于讀懂定義,根據自變量的取值范圍分類討論.4.A【解析】
由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.5.C【解析】
分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.6.D【解析】
對于①,利用拋物線的定義,利用可判斷;對于②,設直線的方程為,與拋物線聯立,用坐標表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標為,可得a,即可判斷.【詳解】如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以①正確.由題意可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據拋物線的對稱性可知,,兩點關于軸對稱,所以過點,,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(即圓心)橫坐標為,所以.于是,,代入,,得,所以.所以③正確.故選:D本題考查了拋物線的性質綜合,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.7.D【解析】
結合純虛數的概念,可得,再結合充分條件和必要條件的定義即可判定選項.【詳解】若復數為純虛數,則,所以,若,不妨設,此時復數,不是純虛數,所以“復數為純虛數”是“”的充分不必要條件.故選:D本題考查充分條件和必要條件,考查了純虛數的概念,理解充分必要條件的邏輯關系是解題的關鍵,屬于基礎題.8.D【解析】
,,得解.【詳解】,,,所以,故選D比較不同數的大小,找中間量作比較是一種常見的方法.9.C【解析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.10.B【解析】
根據函數對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數,在在上是增函數,則為函數的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.本題主要考查函數性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.11.D【解析】
A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.12.A【解析】
由復數的除法求出,然后計算.【詳解】,∴.故選:A.本題考查復數的乘除法運算,考查共軛復數的概念,掌握復數的運算法則是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.52【解析】
設從第2天開始,每天比前一天多織尺布,由等差數列前項和公式求出,由此利用等差數列通項公式能求出.【詳解】設從第2天開始,每天比前一天多織d尺布,
則,
解得,即每天增加的數量為,
,故答案為,52.本題主要考查等差數列的通項公式、等差數列的求和公式,意在考查利用所學知識解決問題的能力,屬于中檔題.14.1【解析】
利用二項式定理得到,將89寫成1+88,然后再利用二項式定理展開即可.【詳解】,因展開式中后面10項均有88這個因式,所以除以的余數為1.故答案為:1本題考查二項式定理的綜合應用,涉及余數的問題,解決此類問題的關鍵是靈活構造二項式,并將它展開分析,本題是一道基礎題.15.【解析】
利用遞推關系,等比數列的通項公式即可求得結果.【詳解】因為,所以,因為是等比數列,所以數列的公比為1.又,所以當時,有.這說明在已知條件下,可以得到唯一的等比數列,所以,故答案為:.該題考查的是有關數列的問題,涉及到的知識點有根據遞推公式求數列的通項公式,屬于簡單題目.16.【解析】
先表示出漸近線,再代入點,求出,則離心率易求.【詳解】解:的漸近線是因為在漸近線上,所以,故答案為:考查雙曲線的離心率的求法,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)根據正弦定理化簡等式可得,即;(2)根據題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當時,四邊形的面積取最大值,最大值為.本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,屬于基礎題.18.(1)(2)【解析】
(1)先利用等比數列的性質,可分別求出的值,從而可求出數列的通項公式;(2)利用錯位相減求和法可求出數列的前項和.【詳解】解:(1)由是遞增等比數列,,聯立,解得或,因為數列是遞增數列,所以只有符合題意,則,結合可得,∴數列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.本題考查了等比數列的性質,考查了等比數列的通項公式,考查了利用錯位相減法求數列的前項和.19.(1);(2).【解析】
(1)由已知短軸長求出,離心率求出關系,結合,即可求解;(2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯立,利用相交弦長公式求出,斜率為,求出,得到關于的表達式,根據表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據弦長公式,求出,即可求出結論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當直線的斜率都存在時,由對稱性不妨設直線的方程為,由,,設,則,則,由橢圓對稱性可設直線的斜率為,則,.令,則,當時,,當時,由得,所以,即,且.②當直線的斜率其中一條不存在時,根據對稱性不妨設設直線的方程為,斜率不存在,則,,此時.若設的方程為,斜率不存在,則,綜上可知的取值范圍是.本題考查橢圓標準方程、直線與橢圓的位置關系,注意根與系數關系、弦長公式、函數最值、橢圓性質的合理應用,意在考查邏輯推理、計算求解能力,屬于難題.20.(1)見解析,12.5(2)①②20【解析】
(1)運用分層抽樣,結合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2)①由公式可計算的值,進而可求與的回歸直線方程;②求出,再對函數求導,結合單調性,可估計這四個籃球館月惠值最大時的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因為所以,,;②,設,所以當遞增,當遞減所以約惠值最大值時的值為20本題考查直方圖的實際應用,涉及求概率,平均數、擬合直線和導數等問題,關鍵是要讀懂題意,屬于中檔題.21.(1)(?。áⅲ┓植急硪娊馕?;(2)理由見解析【解析】
(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結果,利用列舉法求出其中滿足“家長的排序與對應位置的數字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.
(ii)根據(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,由此能求出X的分布列.
(2)假設家長對小孩的飲食習慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為,這個結果發(fā)生的可能性很小,從而這位家長對小孩飲食習慣比較了解.【詳解】(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,先考慮小孩的排序為xA,xB,xC,xD為1234的情況,家長的排序有=24種等可能結果,其中滿足“家
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 動物的生存智慧話題作文(7篇)
- 網絡服務信息安全守秘保障承諾書5篇范文
- 2025年寧波前灣新區(qū)衛(wèi)生系統(tǒng)事業(yè)單位招聘高層次人才11人考前自測高頻考點模擬試題及答案詳解(新)
- 2025年南安市部分公辦學校專項招聘編制內新任教師(二)考前自測高頻考點模擬試題附答案詳解(突破訓練)
- 2025年甘肅省特種設備檢驗檢測研究院聘用人員招聘考前自測高頻考點模擬試題及答案詳解(奪冠)
- 2025廣西河池市大化瑤族自治縣特殊教育學校招聘公益性崗位工作人員2人模擬試卷及答案詳解(易錯題)
- 2025北京郵電大學人工智能學院招聘1人(人才派遣)模擬試卷附答案詳解(黃金題型)
- 項目風險管理模板覆蓋多行業(yè)
- 2025北京大學地球與空間科學學院智慧能源和公共安全研究中心招聘科研助理1人模擬試卷附答案詳解(完整版)
- 湖南省部分市縣2024-2025學年高一下學期期末聯考地理試題(解析版)
- 2023年蘇州職業(yè)大學高職單招(數學)試題庫含答案解析
- GB/T 39554.1-2020全國一體化政務服務平臺政務服務事項基本目錄及實施清單第1部分:編碼要求
- GB/T 2942-2009硫化橡膠與纖維簾線靜態(tài)粘合強度的測定H抽出法
- 電梯設計系統(tǒng)
- 勞動保障協(xié)理員考試復習資料
- DB3301T 0286-2019 城市綠地養(yǎng)護管理質量標準
- 道路護欄設計和路側安全凈區(qū)寬度的計算
- 高處作業(yè)安全技術交底-
- 軸類零件工藝工序卡片
- 道德與法治-六年級(上冊)-《知法守法 依法維權》教學課件
- 紅白喜事禮儀大全之:紅、白喜事常識(完整版)
評論
0/150
提交評論