




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
烏龍木齊第四中學7年級數(shù)學下冊第四章三角形章節(jié)訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、下列三角形與下圖全等的三角形是()A. B.C. D.2、在下列長度的各組線段中,能組成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,123、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm4、如圖,∠BAD=90°,AC平分∠BAD,CB=CD,則∠B與∠ADC滿足的數(shù)量關(guān)系為()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°5、尺規(guī)作圖:作角等于已知角.示意圖如圖所示,則說明的依據(jù)是()A.SSS B.SAS C.ASA D.AAS6、如圖,點,在線段上,與全等,其中點與點,點與點是對應(yīng)頂點,與交于點,則等于()A. B. C. D.7、已知三角形的兩邊長分別為和,則下列長度的四條線段中能作為第三邊的是()A. B. C. D.8、如圖,在和中,已知,在不添加任何輔助線的前提下,要使,只需再添加的一個條件不可以是()A. B. C. D.9、如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結(jié)論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個數(shù)是()A.1 B.2 C.3 D.410、如圖,在△ABC與△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于點D,連接EB.下列結(jié)論:①∠FAC=40°;②AF=AC;③∠EFB=40°;④AD=AC,正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在中,已知點,,分別為,,的中點,且,則陰影部分的面積______.2、如圖,AD是BC邊上的中線,AB=5cm,AD=4cm,△ABD的周長是12cm,則BC的長是____cm.3、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當△PEC與△QFC全等時,CQ的長為______.4、如圖,在長方形ABCD中,,.延長BC到點E,使,連結(jié)DE,動點P從點B出發(fā),以每秒2個單位長度的速度沿向終點A運動.設(shè)點P的運動時間為t秒,當t的值為______________時,和全等.5、如圖,要測量水池的寬度,可從點出發(fā)在地面上畫一條線段,使,再從點觀測,在的延長線上測得一點,使,這時量得,則水池寬的長度是______m.6、如圖,點C是線段AB的中點,.請你只添加一個條件,使得≌.(1)你添加的條件是______;(要求:不再添加輔助線,只需填一個答案即可)(2)依據(jù)所添條件,判定與全等的理由是______.7、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按圖中所示位置擺放,點D在邊AB上,EFBC,則∠ADF的度數(shù)為_____度.8、如圖,點,在直線上,且,且,過,,分別作,,,若,,,則的面積是______.9、如圖,已知,,,則______°.10、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.三、解答題(6小題,每小題10分,共計60分)1、如圖,直角坐標系中,點B(a,0),點C(0,b),點A在第一象限.若a,b滿足(a?t)2+|b?t|=0(t>0).(1)證明:OB=OC;(2)如圖1,連接AB,過A作AD⊥AB交y軸于D,在射線AD上截取AE=AB,連接CE,F(xiàn)是CE的中點,連接AF,OA,當點A在第一象限內(nèi)運動(AD不過點C)時,證明:∠OAF的大小不變;(3)如圖2,B′與B關(guān)于y軸對稱,M在線段BC上,N在CB′的延長線上,且BM=NB′,連接MN交x軸于點T,過T作TQ⊥MN交y軸于點Q,當t=2時,求點Q的坐標.2、如圖,在△ABC中,AB=AC,∠BAC=30°,點D是△ABC內(nèi)一點,DB=DC,∠DCB=30°,點E是BD延長線上一點,AE=AB.(1)求∠ADB的度數(shù);(2)線段DE,AD,DC之間有什么數(shù)量關(guān)系?請說明理由.(提示:在線段DE上截取線段EM=BD,連接線段AM或者在線段DE上截取線段DM=AD連接線段AM).3、在四邊形ABCD中,,點E在直線AB上,且.(1)如圖1,若,,,求AB的長;(2)如圖2,若DE交BC于點F,,求證:.4、如圖,在ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的長.5、如圖,AB是⊙O的直徑,CD是⊙O中任意一條弦,求證:AB≥CD.6、如圖,在每個小正方形的邊長均相等的網(wǎng)格中,△ABC的頂點均在格點(網(wǎng)格線的交點)上.(1)線段CD將△ABC分成面積相等的兩個三角形,且點D在邊AB上,畫出線段CD.(2)△CBE≌△CBD,且點E在格點上,畫出△CBE.-參考答案-一、單選題1、C【分析】根據(jù)已知的三角形求第三個內(nèi)角的度數(shù),由全等三角形的判定定理即可得出答案.【詳解】由題可知,第三個內(nèi)角的度數(shù)為,A.只有兩邊,故不能判斷三角形全等,故此選項錯誤;B.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項錯誤;C.兩邊相等且夾角相等,故能判斷兩三角形全等,故此選項正確;D.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項錯誤.故選:C.【點睛】本題考查全等三角形的判定,掌握全等三角形的判定定理是解題的關(guān)鍵.2、C【分析】根據(jù)三角形三邊關(guān)系定理:三角形兩邊之和大于第三邊,進行判定即可.【詳解】解:A、∵,∴不能構(gòu)成三角形;B、∵,∴不能構(gòu)成三角形;C、∵,∴能構(gòu)成三角形;D、∵,∴不能構(gòu)成三角形.故選:C.【點睛】本題主要考查運用三角形三邊關(guān)系判定三條線段能否構(gòu)成三角形的情況,理解構(gòu)成三角形的三邊關(guān)系是解題關(guān)鍵.3、C【分析】設(shè)三角形第三邊的長為xcm,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設(shè)三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項中,只有選項C符合題意,故選:C.【點睛】本題主要考查了三角形三邊關(guān)系的應(yīng)用.此類求三角形第三邊的范圍的題,實際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.4、C【分析】由題意在射線AD上截取AE=AB,連接CE,根據(jù)SAS不難證得△ABC≌△AEC,從而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,證得∠B=∠CDE,即可得出結(jié)果.【詳解】解:在射線AD上截取AE=AB,連接CE,如圖所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC與△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故選:C.【點睛】本題主要考查全等三角形的判定與性質(zhì),解答的關(guān)鍵是作出適當?shù)妮o助線AE,CE.5、A【分析】利用基本作圖得到OD=OC=OD′=OC′,CD=C′D′,則根據(jù)全等三角形的判定方法可根據(jù)“SSS”可判斷△OCD≌△O′C′D′,然后根據(jù)全等三角形的性質(zhì)得到∠A′OB′=∠AOB.【詳解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根據(jù)“SSS”可判斷△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故選:A.【點睛】本題考查了作圖﹣基本作圖和全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練掌握基本作圖和全等三角形的判定定理.6、D【分析】根據(jù)點與點,點與點是對應(yīng)頂點,得到,根據(jù)全等三角形的性質(zhì)解答.【詳解】解:與全等,點與點,點與點是對應(yīng)頂點,,.故選:D【點睛】本題主要考查了全等三角形的性質(zhì),熟練掌握全等三角形的對應(yīng)邊相等,對應(yīng)角相等是解題的關(guān)鍵.7、C【分析】根據(jù)三角形的三邊關(guān)系可得,再解不等式可得答案.【詳解】解:設(shè)三角形的第三邊為,由題意可得:,即,故選:C.【點睛】本題主要考查了三角形的三邊關(guān)系,解題的關(guān)鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.8、B【分析】添加AC=AD,利用SAS即可得到兩三角形全等;添加∠D=∠C,利用AAS即可得到兩三角形全等,添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等.【詳解】解:A、添加AC=AD,利用SAS即可得到兩三角形全等,故此選項不符合題意;B、添加BC=BD,不能判定兩三角形全等,故此選項符合題意;C、添加∠D=∠C,利用AAS即可得到兩三角形全等,故此選項不符合題意;D、添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等,故此選項不符合題意;故選:B.【點睛】此題考查了全等三角形的判定,熟練掌握全等三角形的判定方法是解本題的關(guān)鍵.9、D【分析】首先證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對折,得到△BPF,利用角的關(guān)系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點睛】本題主要是考查了三角形全等、正方形的性質(zhì),熟練地綜合應(yīng)用全等三角形以及正方形的性質(zhì),證明邊相等和角相等,是解決本題的關(guān)鍵.10、C【分析】由“SAS”可證△ABC≌△AEF,由全等三角形的性質(zhì)依次判斷可求解.【詳解】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正確,∴∠BAE=∠FAC=40°,故①正確,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=40°,故③正確,無法證明AD=AC,故④錯誤,故選:C.【點睛】本題考查全等三角形的判定與性質(zhì),是重要考點,掌握相關(guān)知識是解題關(guān)鍵.二、填空題1、【分析】根據(jù)三角形中線性質(zhì),平分三角形面積,先利用AD為△ABC中線可得S△ABD=S△ACD,根據(jù)E為AD中點,,根據(jù)BF為△BEC中線,即可.【詳解】解:∵AD為△ABC中線∴S△ABD=S△ACD,又∵E為AD中點,故,∴,∵BF為△BEC中線,∴cm2.故答案為:1cm2.【點撥】本題考查了三角形中線的性質(zhì),牢固掌握并會運用是解題關(guān)鍵.2、6【分析】根據(jù)AD是BC邊上的中線,得出為的中點,可得,根據(jù)條件可求出.【詳解】解:AD是BC邊上的中線,為的中點,,,△ABD的周長是12cm,,,故答案是:6.【點睛】本題考查了三角形的中線,解題的關(guān)鍵利用中線的性質(zhì)得出為的中點.3、7或3.5【分析】分兩種情況:(1)當P在AC上,Q在BC上時;(2)當P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.4、1或7【分析】分兩種情況進行討論,根據(jù)題意得出BP=2t=2或AP=16-2t=2即可求得結(jié)果.【詳解】解:當點P在BC上時,∵AB=CD,∴當△ABP≌△DCE,得到BP=CE,由題意得:BP=2t=2,∴t=1,當P在AD上時,∵AB=CD,∴當△BAP≌△DCE,得到AP=CE,由題意得:AP=6+6-4﹣2t=2,解得t=7.∴當t的值為1或7秒時.△ABP和△DCE全等.故答案為:1或7.【點睛】本題考查了全等三角形的判定,解題的關(guān)鍵在于能夠利用分類討論的思想進行求解.5、160【分析】利用全等三角形的性質(zhì)解決問題即可.【詳解】解:,,在與中,,≌,,故答案為:.【點睛】本題考查全等三角形的應(yīng)用,解題關(guān)鍵是理解題意,正確尋找全等三角形解決問題.6、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知條件可得兩個三角形有一組對應(yīng)邊相等,一組對應(yīng)角相等,根據(jù)三角形全等的判定方法添加條件即可;(2)根據(jù)添加的條件,寫出判斷的理由即可.【詳解】解:(1)添加的條件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案為:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵點C是線段AB的中點,∴AC=BC∵∴∴≌(SAS)故答案為:SAS【點睛】本題主要考查了添加條件判斷三角形全等,熟練掌握全等三角形的判斷方法是解答本題的關(guān)鍵.7、75【分析】設(shè)CB與ED交點為G,依據(jù)平行線的性質(zhì),即可得到∠CGD的度數(shù),再根據(jù)三角形外角的性質(zhì),得到∠BDE的度數(shù),即可得∠ADF的度數(shù).【詳解】如圖所示,設(shè)CB與ED交點為G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案為:75.【點睛】本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì),解題時注意:兩條平行線被第三條直線所截,同位角相等.8、15【分析】根據(jù)AAS證明△EFA≌△AGB,△BGC≌△CHD,再根據(jù)全等三角形的性質(zhì)以及三角形的面積公式求解即可.【詳解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可證△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案為:15.【點睛】本題考查了三角形全等的性質(zhì)和判定,解題的關(guān)鍵是靈活運用所學知識解決問題.9、59【分析】如圖,過作證明證明再利用三角形的外角的性質(zhì)求解從而可得答案.【詳解】解:如圖,過作,而,,故答案為:【點睛】本題考查的是平行線的性質(zhì),平行公理的應(yīng)用,三角形的外角的性質(zhì),過作再證明是解本題的關(guān)鍵.10、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.三、解答題1、(1)見解析(2)見解析(3)點坐標為(,).【分析】(1)利用絕對值以及平方的非負性求出B、C的坐標,利用坐標表示邊長,即可證明結(jié)論.(2)延長至點,使,連接、,利用條件先證明,再根據(jù)全等三角形性質(zhì),進一步證明,最后綜合條件得到為等腰直角三角形,進而得到∠OAF為,是個定值,即可證得結(jié)論成立.(3)先連接、、、,過作交軸于,利用平行關(guān)系和邊相等證明,然后通過全等三角形性質(zhì)進一步證明,再根據(jù)角與角之間的關(guān)系,求出,得到為等腰直角三角形,最后利用等腰三角形的性質(zhì),即可求出點坐標.【詳解】(1)證明:(a?t)2+|b?t|=0(t>0),,即,點B坐標為(a,0),點C坐標為(0,b),,故結(jié)論得證.(2)解:如圖所示:延長至點,使,連接、,是的中點,,在和中,,,,,,,,,,,,,,,在與中,.,,,,為等腰直角三角形.,故∠OAF的大小不變.(3)解:連接、、、,過作交軸于.如下圖所示:和關(guān)于軸對稱,在軸上.,,,,.,,,,在和中,.,又,,垂直平分,,在和中,.,.,故.,.為等腰直角三角形..故點坐標為(,).【點睛】本題主要是考查了對稱點的坐標關(guān)系以及利用坐標求解幾何圖形,熟練掌握垂直平分線、平行線以及等腰三角形、全等三角形的判定和性質(zhì),是解決本題的關(guān)系.2、(1)∠ADB的度數(shù)為.(2),證明見解析.【分析】(1)利用已知條件,先證明,再通過全等三角形的性質(zhì),求解,最后利用三角形內(nèi)角和為,即可求出∠ADB的度數(shù).(2)在線段DE上截取線段DM=AD連接線段AM,證明,進而得到,最后即可證得結(jié)論成立.【詳解】(1)解:,為等腰三角形,,,,,.,.在中,..(2)解:,證明:如圖所示:在線段DE上截取線段DM=AD,并連接線段AM,,,是等邊三角形,,,,,,,,,.【點睛】本題主要是考查了三角形的全等以及等腰三角形的性質(zhì),正確找到判定三角形全等的條件,并利用其性質(zhì)證明角相等或邊相等,是解決本題的關(guān)鍵,另外,證明邊長之間的關(guān)系,一般會在較長的邊上進行截取,這個做題技巧,需要注意.3、(1)5;(2)證明見解析【分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寵物店員工洗護知識培訓課件
- 堿減量操作工崗前技能安全考核試卷含答案
- 2025年水利五大員知識題庫(含答案)
- 鈷基異質(zhì)結(jié)的構(gòu)建及其光催化析氫性能研究
- 2025年無機化工用催化劑合作協(xié)議書
- 頭面工班組協(xié)作模擬考核試卷含答案
- 2023四年級數(shù)學上冊 一 升和毫升說課稿 蘇教版
- 地理中考試卷及答案徐州
- 磚瓦原料工安全技能水平考核試卷含答案
- 短波通信機務(wù)員安全應(yīng)急水平考核試卷含答案
- 關(guān)于幸福的課件
- 2025高級會計師考試題及答案
- 質(zhì)檢主管工作匯報
- 應(yīng)急演練方案腳本大全
- 軍隊文職課件
- 2025年資料員考試題庫含完整答案
- 林黛玉身世經(jīng)歷課件
- 體育老師讀書分享:運動與人生
- 2025年安全員考試題庫及參考答案完整版
- 預防接種課件講稿
- 財務(wù)風險防控與內(nèi)控管理方案
評論
0/150
提交評論