




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.2、一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,從袋子中隨機(jī)摸出一個球,這個球是白球的概率是()A. B. C. D.3、如圖,四邊形ABCD內(nèi)接于⊙O,若∠ADC=130°,則∠AOC的度數(shù)為()A.25° B.80° C.130° D.100°4、若a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),則關(guān)于x的方程為一元二次方程的概率是()A.1 B. C. D.5、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形6、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運(yùn)動過程中,線段長度的最小值是()A. B.1 C.2 D.7、下列各點中,關(guān)于原點對稱的兩個點是()A.(﹣5,0)與(0,5) B.(0,2)與(2,0)C.(﹣2,﹣1)與(﹣2,1) D.(2,﹣1)與(﹣2,1)8、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、數(shù)學(xué)興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.2、如圖,把△ABC繞點C順時針旋轉(zhuǎn)某個角度α得到,∠A=30°,∠1=70°,則旋轉(zhuǎn)角α的度數(shù)為_____.3、如圖,PA是⊙O的切線,A是切點.若∠APO=25°,則∠AOP=___________°.4、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點,則的最小值是______.5、如圖,過⊙O外一點P,作射線PA,PB分別切⊙O于點A,B,,點C在劣弧AB上,過點C作⊙O的切線分別與PA,PB交于點D,E.則______度.6、如圖,在等腰直角中,已知,將繞點逆時針旋轉(zhuǎn)60°,得到,連接,若,則________.7、現(xiàn)有A、B兩個不透明的袋子,各裝有三個小球,A袋中的三個小球上分別標(biāo)記數(shù)字1,2,3;B袋中的三個小球上分別標(biāo)記數(shù)字2,3,4.這六個小球除標(biāo)記的數(shù)字外,其余完全相同.將A、B兩個袋子中的小球搖勻,然后從A、B袋中各隨機(jī)摸出一個小球,則摸出的這兩個小球標(biāo)記的數(shù)字之和為5的概率為______.三、解答題(7小題,每小題0分,共計0分)1、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.2、如圖,在中,,以AC為直徑的半圓交斜邊AB于點D,E為BC的中點,連結(jié)DE,CD.過點D作于點F.(1)求證:DE是的切線;(2)若,,求的半徑.3、元元同學(xué)在數(shù)學(xué)課上遇到這樣一個問題:如圖1,在平面直角坐標(biāo)系xOy中,OA經(jīng)過坐標(biāo)原點O,并與兩坐標(biāo)軸分別交于B、C兩點,點B的坐標(biāo)為,點D在上,且,求OA的半徑和圓心A的坐標(biāo).元元的做法如下,請你幫忙補(bǔ)全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標(biāo)為(④)的半徑為⑤4、如圖所示,是⊙的一條弦,,垂足為,交⊙于點,點在⊙上.()若,求的度數(shù).()若,,求的長.5、如圖,在直角坐標(biāo)系中,將△ABC繞點A順時針旋轉(zhuǎn)90°.(1)畫出旋轉(zhuǎn)后的△AB1C1,并寫出B1、C1的坐標(biāo);(2)求線段AB在旋轉(zhuǎn)過程中掃過的面積.6、如圖,等腰直角三角形,,,延長至E,使得,以為直角邊作,,.(1)若以每秒1個單位的速度沿向右運(yùn)動,當(dāng)點E到達(dá)點C時停止運(yùn)動,直接寫出在運(yùn)動過程中與重疊部分面積S與運(yùn)動時間t(單位:秒)的函數(shù)關(guān)系式;(2)點M為線段的中點,當(dāng)(1)中的頂點E運(yùn)動到點C后,將繞著點C繼續(xù)順時針旋轉(zhuǎn)得到,點P是直線上一動點,連接,求的最小值.7、某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當(dāng)天舉辦了甲.乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機(jī)會.已知在搖獎機(jī)內(nèi)裝有2個紅球和2個白球,除顏色外其他都相同,搖獎?wù)弑仨殢膿u獎機(jī)內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色決定送禮金券的多少(如表).甲種品牌化妝品球兩紅一紅一白兩白禮金券(元)6126乙種品牌化妝品球兩紅一紅一白兩白禮金券(元)12612(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;(2)如果一個顧客當(dāng)天在本店購買滿88元,若只考慮獲得最多的禮品券,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.-參考答案-一、單選題1、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.2、D【分析】根據(jù)隨機(jī)事件概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A),進(jìn)行計算即可.【詳解】解:∵一個黑色布袋中裝有3個紅球和2個白球,這些球除顏色外其它都相同,∴抽到每個球的可能性相同,∴布袋中任意摸出1個球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點睛】本題考查了隨機(jī)事件概率的求法,熟練掌握隨機(jī)事件概率公式是解題關(guān)鍵.3、D【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠B的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圓周角定理得,∠AOC=2∠B=100°,故選:D.【點睛】本題考查的是圓內(nèi)接四邊形的性質(zhì)和圓周角定理,掌握圓內(nèi)接四邊形的對角互補(bǔ)是解題的關(guān)鍵.4、B【分析】根據(jù)一元二次方程的定義,二次項系數(shù)不為0,四個數(shù)中有一個1不能取,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,然后利用概率公式計算即可.【詳解】解:當(dāng)a=1時于x的方程不是一元二次方程,其它三個數(shù)都是一元二次方程,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,關(guān)于x的方程為一元二次方程的概率是,故選擇B.【點睛】本題考查一元二次方程的定義,列舉法求概率,掌握一元二次方程的定義,列舉法求概率方法是解題關(guān)鍵.5、A【分析】根據(jù)等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關(guān)鍵.6、A【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵M(jìn)B旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.7、D【分析】根據(jù)關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),可得答案.【詳解】解:A、(﹣5,0)與(0,5)橫、縱坐標(biāo)不滿足關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)的特征,故A錯誤;B、(0,2)與(2,0)橫、縱坐標(biāo)不滿足關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)的特征,故B錯誤;C、(﹣2,﹣1)與(﹣2,1)關(guān)于x軸對稱,故C錯誤;D、關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),故D正確;故選:D.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù).8、C【詳解】解:選項A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點睛】本題考查的是軸對稱圖形的識別,中心對稱圖形的識別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵,軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個圖形繞某點旋轉(zhuǎn)后能與自身重合.二、填空題1、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.2、##【分析】由旋轉(zhuǎn)的性質(zhì)可得再利用三角形的外角的性質(zhì)求解從而可得答案.【詳解】解:把△ABC繞點C順時針旋轉(zhuǎn)某個角度α得到,∠A=30°,∠1=70°,故答案為:【點睛】本題考查的是旋轉(zhuǎn)的性質(zhì),三角形的外角的性質(zhì),利用性質(zhì)的性質(zhì)求解是解本題的關(guān)鍵.3、65【分析】根據(jù)切線的性質(zhì)得到OA⊥AP,根據(jù)直角三角形的兩銳角互余計算,得到答案.【詳解】解:∵PA是⊙O的切線,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案為:65.【點睛】本題考查的是切線的性質(zhì)、直角三角形的性質(zhì),掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.4、【分析】由與是等腰直角三角形,得到,,根據(jù)全等三角形的性質(zhì)得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當(dāng)時,的值最小,解直角三角形即可得到結(jié)論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當(dāng)時,的值最小,,,,,.則的最小值是,故答案為:.【點睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.5、65【分析】連接OA,OC,OB,根據(jù)四邊形內(nèi)角和可得,依據(jù)切線的性質(zhì)及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數(shù)量關(guān)系可得,,根據(jù)等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點睛】題目主要考查圓的切線的性質(zhì),角平分線的判定和性質(zhì),四邊形內(nèi)角和等,理解題意,作出相應(yīng)輔助線,綜合運(yùn)用這些知識點是解題關(guān)鍵.6、【分析】如圖連接并延長,過點作交于點,,由題意可知為等邊三角形,,,在中;在中計算求解即可.【詳解】解:如圖連接并延長,過點作交于點,由題意可知,,為等邊三角形在中在中故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形,勾股定理,含的直角三角形等知識.解題的關(guān)鍵在于做輔助線構(gòu)造直角三角形.7、【分析】先列表,再利用表格信息得到所有的等可能的結(jié)果數(shù)與符合條件的結(jié)果數(shù),再利用概率公式進(jìn)行計算即可.【詳解】解:列表如下:12321+2=32+2=42+3=533+1=43+2=53+3=644+1=54+2=64+3=7可得:所有的等可能的結(jié)果數(shù)有9種,而和為5的結(jié)果數(shù)有3種,摸出的這兩個小球標(biāo)記的數(shù)字之和為5的概率為:故答案為:【點睛】本題考查的是利用列表法或畫樹狀圖的方法求解簡單隨機(jī)事件的概率,掌握“列表或畫樹狀圖的方法”是解本題的關(guān)鍵.三、解答題1、(1)見解析(2)見解析【分析】(1)由垂徑定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后說明Rt△CDE≌Rt△BDE,最后運(yùn)用全等三角形的性質(zhì)即可證明;(2)由等腰三角形的性質(zhì)可得∠ECB=∠EBC、∠OCB=∠OBC,再根據(jù)CE是切線得到∠OCE=90°,即∠OCB+∠BCE=90°,進(jìn)而說明BE⊥AB即可證明.(1)證明:∵點D為弦BC中點∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)證明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切線∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切線.【點睛】本題主要考查了垂徑定理、全等三角形的判定與性質(zhì)、切線的證明、等腰三角形的性質(zhì)等知識點,掌握垂徑定理是解答本題的關(guān)鍵.2、(1)見解析(2)【分析】(1)連接,先根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)圓周角定理可得,然后根據(jù)直角三角形的性質(zhì)可得,根據(jù)等腰三角形的性質(zhì)可得,從而可得,最后根據(jù)圓的切線的判定即可得證;(2)連接,先利用勾股定理可得,設(shè)的半徑為,從而可得,再在中,利用勾股定理即可得.(1)證明:如圖,連接,,,是的直徑,,,點是的中點,,,,即,又是的半徑,是的切線;(2)解:如圖,連接,,,設(shè)的半徑為,則,在中,,即,解得,故的半徑為.【點睛】本題考查了圓周角定理、等腰三角形的性質(zhì)、圓的切線的判定、勾股定理等知識點,熟練掌握圓周角定理和圓的切線的判定是解題關(guān)鍵.3、垂徑定理,圓周角定理,圓周角定理,(1,),2【分析】根據(jù)垂徑定理,圓周角定理依次分析解答.【詳解】解:如圖2,連接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依據(jù)是垂徑定理)∵,∴(依據(jù)是圓周角定理).∵,.∴BC是的直徑(依據(jù)是圓周角定理).∴,∵,∴A的坐標(biāo)為(1,),的半徑為2,故答案為:垂徑定理,圓周角定理,圓周角定理,(1,),2.【點睛】此題考查了圓的知識,垂徑定理、圓周角定理,熟記各定理知識并綜合應(yīng)用是解題的關(guān)鍵.4、(1)26°;(2)8【分析】(1)欲求,又已知一圓心角,可利用圓周角與圓心角的關(guān)系求解;(2)利用垂徑定理可以得到,從而得到結(jié)論.【詳解】解:(1),,.(2)∵,,且,∴,∵,,.【點睛】此題考查了圓周角定理,同圓中等弧所對的圓周角相等,以及垂徑定理,熟練掌握垂徑定理得出是解題關(guān)鍵.5、(1)作圖見解析,、;(2)【分析】(1)將繞點A順時針旋轉(zhuǎn)90°得,根據(jù)點A、B、C坐標(biāo),即可確定出點、的坐標(biāo);(2)根據(jù)勾股定理求出AB的長,由扇形面積公式即可得出答案.【詳解】(1)將繞點A順時針旋轉(zhuǎn)90°得如圖所示:∴、;(2)由圖可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老舊供水管網(wǎng)檢測與修復(fù)技術(shù)升級方案
- 2025秋季學(xué)期國開電大法律事務(wù)??啤缎谭▽W(xué)(2)》期末紙質(zhì)考試簡答題題庫珍藏版
- 胎兒異常護(hù)理周立蓉28課件
- 橋梁材料性能檢測方案
- 緯編布生產(chǎn)線項目人力資源管理方案
- 水電站運(yùn)行管理課件
- 水電煤氣安全知識培訓(xùn)課件
- 水電施工知識課件
- 二零二五年電子顯示屏廣告租賃合同
- 二零二五年門窗安裝與綠色環(huán)保認(rèn)證合作協(xié)議
- 海事管理培訓(xùn)課件
- 《曾國藩傳》讀書分享課件
- 十五五林業(yè)發(fā)展規(guī)劃(完整版)
- 廠區(qū)安保巡邏管理制度
- T/CECS 10209-2022給水用高環(huán)剛鋼骨架增強(qiáng)聚乙烯復(fù)合管材
- 項目包裝合作協(xié)議書
- 安徽省合肥一中2025屆高三5月回歸教材讀本
- 2024年江西省投資集團(tuán)有限公司總部招聘考試真題
- 2025年04月廣東省特種設(shè)備檢測研究院東莞檢測院招考筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 老年人生命教育
- 院感相關(guān)法律法規(guī)知識培訓(xùn)
評論
0/150
提交評論