難點解析-河南省登封市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測試試題(含詳細解析)_第1頁
難點解析-河南省登封市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測試試題(含詳細解析)_第2頁
難點解析-河南省登封市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測試試題(含詳細解析)_第3頁
難點解析-河南省登封市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測試試題(含詳細解析)_第4頁
難點解析-河南省登封市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測試試題(含詳細解析)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南省登封市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底墻到左墻角的距離為1.5m,頂端距離地面2m,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面0.7m,那么小巷的寬度為(

)A.3.2m B.3.5m C.3.9m D.4m2、如圖,正方形ABCD中,AB=12,將△ADE沿AE對折至△AEF,延長EF交BC于點G,G剛好是BC邊的中點,則ED的長是()A.2 B.3 C.4 D.53、《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10024、如圖,中,,將折疊,使點C與的中點D重合,折痕交于點M,交于點N,則線段的長為(

).A. B. C.3 D.5、在△ABC中,,那么△ABC是(

)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形6、如圖,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,連接AE,BD交于點F,則BF的長為(

)A. B. C. D.7、如圖是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設直角三角形的兩直角邊分別是a、b,且,大正方形的面積是9,則小正方形的面積是(

)A.3 B.4 C.5 D.6第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、我國古代九章算術中有數(shù)學發(fā)展史上著名的“葭生池中”問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問:葭長幾何?(1丈=10尺).意思是:有一個長方體池子,底面是邊長為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒有折斷),剛好貼在池邊上,問:蘆葦長多少尺?答:蘆葦長____________尺.2、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時,梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動,將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.3、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D.E為線段BD上一點,連結CE,將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上.若AB=10,BC=8,則△ACE的面積為________.4、如圖,在正方形網(wǎng)格中,點A,B,C,D,E是格點,則∠ABD+∠CBE的度數(shù)為_____________.

5、如圖,在一次綜合實踐活動中,小明將一張邊長為的正方形紙片,沿著邊上一點與點的連線折疊,點是點的對應點,延長交于點,經(jīng)測量,,則的面積為______.6、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為17米,幾分鐘后船到達點D的位置,此時繩子CD的長為10米,問船向岸邊移動了__米.7、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時梯子的高度達不到工作要求,因此把梯子的B1端向墻的方向移動了1.6米到B處,此時梯子的高度達到工作要求,那么梯子的A1端向上移動了_____米.8、如圖,臺風過后,某希望小學的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長16m,你能求出旗桿在離底部________m位置斷裂.三、解答題(7小題,每小題10分,共計70分)1、如圖,,兩個工廠位于一段直線形河道的異側(cè),工廠至河道的距離為,工廠至河道的距離為,經(jīng)測量河道上、兩地間的距離為,現(xiàn)準備在河邊某處(河寬不計)修一個污水處理廠.(1)設,請用的代數(shù)式表示的長______;(結果保留根號)(2)為了使,兩廠到污水處理廠的排污管道之和最短,請在圖中畫出污水廠位置,并求出排污管道最短長度?(3)通過以上的解答,充分展開聯(lián)想,運用數(shù)形結合思想,請你求出的最小值為多少?2、勾股定理被譽為“幾何明珠”,在數(shù)學的發(fā)展歷程中占有舉足輕重的地位.它是初中數(shù)學中的重要知識點之一,也是初中學生以后解決數(shù)學問題和實際問題中常常運用到的重要知識,因此學好勾股定理非常重要.學習數(shù)學“不僅要知其然,更要知其所以然”,所以,我們要學會勾股定理的各種證明方法.請你利用如圖圖形證明勾股定理:已知:如圖,四邊形ABCD中,BD⊥CD,AE⊥BD于點E,且△ABE≌△BCD.求證:AB2=BE2+AE2.3、如圖,在正方形ABCD中,E是邊AB上的一動點,點F在邊BC的延長線上,且,連接DE,DF.(1)求證:;(2)連接EF,取EF中點G,連接DG并延長交BC于H,連接BG.①依題意,補全圖形;②求證:;③若,用等式表示線段BG,HG與AE之間的數(shù)量關系,請直接寫出結論.4、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時施工,過點B作一直線m(在山的旁邊經(jīng)過),過點C作一直線l與m相交于D點,經(jīng)測量,,米,米.若施工隊每天挖100米,求施工隊幾天能挖完?5、一架云梯長25m,如圖所示斜靠在一而墻上,梯子底端C離墻7m.(1)這個梯子的頂端A距地面有多高?(2)如果梯子的頂端下滑了4m,那么梯子的底部在水平方向滑動了多少米?6、閱讀下面材料:小明遇到這樣一個問題:∠MBN=30°,點A為射線BM上一點,且AB=4,點C為射線BN上動點,連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當AC⊥BN時,求BD的長.小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對全等的三角形,再利用∠EBC=90°,從而將問題解決(如圖1).請回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長為.(2)動點C在射線BN上運動,當運動到AC時,求BD的長;(3)動點C在射線BN上運動,求△ABD周長最小值.7、如圖,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,點D為BC的中點,.(1)求證:△ABC≌△DEB.(2)連結AE,若BC=4,直接寫出AE的長.-參考答案-一、單選題1、C【解析】【分析】如圖,在Rt△ACB中,先根據(jù)勾股定理求出AB,然后在Rt△A′BD中根據(jù)勾股定理求出BD,進而可得答案.【詳解】解:如圖,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故選:C.【考點】本題考查了勾股定理的應用,正確理解題意、熟練掌握勾股定理是解題的關鍵.2、C【解析】【分析】連接AG,證明△ABG≌△AFG,得到FG=BG,△ADE沿AE對折至△AEF,則EF=DE,設DE=x,則EF=x,EC=12-x,則Rt△EGC中根據(jù)勾股定理列方程可求出DE的值.【詳解】如圖,連接AG,∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE對折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共邊,∴△ABG≌△AFG(HL),∵G剛好是BC邊的中點,∴BG=FG=,設DE=x,則EF=x,EC=12-x,在Rt△EGC中,根據(jù)勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的長是4,答案選C.【考點】本題考查了正方形和全等三角形的綜合知識,根據(jù)勾股定理列方程是本題的解題關鍵.3、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對角線長1丈(100寸),即可得出關于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點】本題主要考查了勾股定理的應用、由實際問題抽象出一元二次方程,準確計算是解題的關鍵.4、D【解析】【分析】由折疊的性質(zhì)可得DN=CN,根據(jù)勾股定理可求DN的長,即可得出結果.【詳解】解:∵D是AB中點,AB=4,∴AD=BD=2,∵將△ABC折疊,使點C與AB的中點D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故選:D.【考點】本題考查了翻折變換、折疊的性質(zhì)、勾股定理,熟練運用折疊的性質(zhì)是本題的關鍵.5、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點】本題考查了等腰三角形的判定和勾股定理逆定理.此題關鍵是利用勾股定理的逆定理解答.6、B【解析】【分析】由已知證得,進而確定三個內(nèi)角的大小,求得,進而可得到答案.【詳解】解:∵∴∴又∵∴∴∵在等腰直角三角形中∴∴∴∵∴故選:B.【考點】本題考查全等三角形的判定和性質(zhì),勾股定理;熟練掌握相關知識是解題的關鍵.7、A【解析】【分析】觀察圖形可知,小正方形的面積=大正方形的面積?4個直角三角形的面積,利用已知(a+b)2=15,大正方形的面積為9,可以得出直角三角形的面積,進而求出答案.【詳解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面積為:a2+b2=9,∴2ab=15?9=6,即ab=3,∴直角三角形的面積為:,∴小正方形的面積為:,故選:A.【考點】此題主要考查了完全平方公式及勾股定理的應用,熟練應用完全平方公式及勾股定理是解題關鍵.二、填空題1、13【解析】【分析】設水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點】此題考查了勾股定理的實際應用,解題的關鍵是根據(jù)題意設出未知數(shù),根據(jù)勾股定理列方程求解.2、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長,同理可得出AB的長,進而可得出結論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時,勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.3、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點】本題考查直角三角形中的折疊問題,解題的關鍵是掌握折疊的性質(zhì),熟練運用勾股定理.4、45°【解析】【分析】取網(wǎng)格點M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識,求得∠ABD+∠CBE=∠MAB是解答本題的關鍵.5、##【解析】【分析】根據(jù)題意,,進而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點】本題考查了折疊的性質(zhì),勾股定理,掌握勾股定理是解題的關鍵.6、9.【解析】【分析】在Rt△ABC中,利用勾股定理計算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動了9米,故答案為:9.【考點】本題考查了勾股定理的應用,關鍵是掌握從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.7、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動前和滑動后的所構成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點】本題考查勾股定理的應用,解題關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.8、6【解析】【分析】設,則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設,則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點】本題考查勾股定理的實際應用,讀懂題意,根據(jù)勾股定理列出方程是解題的關鍵.三、解答題1、(1)+;(2)污水廠位置見解析,排污管道最短長度為10km;(3)13【解析】【分析】(1)依據(jù)ED=x,AC⊥CD、BD⊥CD,故根據(jù)勾股定理可用x表示出AE+BE的長;(2)根據(jù)兩點之間線段最短可知連接AB與CD的交點就是污水處理廠E的位置.過點B作BF⊥AC于F,構造出直角三角形,利用勾股定理求出AB的長;(3)根據(jù)AE+BE=+=AB=10,可猜想所求代數(shù)式的值為13.(1)解:在Rt△ACE和Rt△BDE中,根據(jù)勾股定理可得AE=,BE=,∴AE+BE=+;(2)解:根據(jù)兩點之間線段最短可知,連接AB與CD的交點就是污水處理廠E的位置,如圖:過點B作BF⊥AC于F,則有BF=CD=8,BD=CF=1,∴AF=AC+CF=6,在Rt△ABF中,BA===10,∴排污管道最短長度10km;(3)解:根據(jù)以上推理,可作出下圖:設ED=x,AC=3,DB=2,CD=12.當A、E、B共線時求出AB的值即為原式最小值.當A、E、B共線時,==13,即其最小值為13.故答案為:13.【考點】本題考查了最短路線問題,綜合利用了勾股定理,及用數(shù)形結合的方法求代數(shù)式的值的方法,利用兩點之間線段最短是解決問題的關鍵.2、證明見解析【解析】【分析】連接AC,根據(jù)四邊形ABCD面積的兩種不同表示形式,結合全等三角形的性質(zhì)即可求解.【詳解】解:連接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四邊形ABCD=,又∵S四邊形ABCD=,,∴AB2=AE2+BD?BE-BE?DE,∴AB2=AE2+(BD-DE)?BE,即AB2=BE2+AE2.【考點】本題考查了勾股定理的證明,解題時,利用了全等三角形的對應邊相等,對應角相等的性質(zhì).3、(1)見解析(2)①見解析;②見解析;③BG2+HG2=4AE2.【解析】【分析】(1)證△ADE≌△CDF(SAS),得∠ADE=∠CDF,再證∠EDF=90°,即可得出結論;(2)①依題意,補全圖形即可;②由直角三角形斜邊上的中線性質(zhì)得DG=EF,BG=EF,即可得出結論;③先證△DEF是等腰直角三角形,得∠DEG=45°,再證DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后證△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依題意,補全圖形如圖所示:②證明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中點,∴DG=EF,BG=EF,∴BG=DG;③BG2+HG2=4AE2,證明:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G為EF的中點,∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,∵∠EGB=45°,∴∠GBF=∠GFB=22.5°,∵∠DHF+∠HFG=∠DHF+∠CDH=90°,∴∠HFG=∠CDH=22.5°,∴∠CDF=∠GDF?∠HDC=22.5°=∠CDH,又∵∠DCH=∠DCF=90°,CD=CD,∴△CDH≌△CDF(ASA),∴CH=CF,在Rt△GHF中,由勾股定理得:GF2+HG2=HF2,∵HF=2CF=2AE,GF=BG,∴BG2+HG2=(2AE)2,∴BG2+HG2=4AE2.【考點】本題是四邊形綜合題,考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、直角三角形斜邊上的中線性質(zhì)、等腰三角形的性質(zhì)等知識;熟練掌握正方形的性質(zhì)和等腰直角三角形的判定與性質(zhì),證明三角形全等是解題的關鍵,屬于中考??碱}型.4、施工隊6天能挖完.【解析】【分析】根據(jù)題意可得∠BCD=90°,再利用勾股定理得出BC,繼而即可求解.【詳解】解:∵,∴,∵米,米,∴(米)故(天)答:施工隊6天能挖完.【考點】本題考查外角的性質(zhì),勾股定理的應用,解題的關鍵是利用勾股定理求得∠BCD=90°.5、(1)這個梯子的頂端距地面有高;(2)梯子的底部在水平方向滑動了.【解析】【分析】(1)根據(jù)勾股定理即可求解;(2)先求出BD,再根據(jù)勾股定理即可求解.【詳解】解:(1)由題意可知:,;,在中,由勾股定理得:,∴,因此,這個梯子的頂端距地面有高.(2)由圖可知:AD=4m,,在中,由勾股定理得:,∴,∴.答:梯子的底部在水平方向滑動了.【考點】此題主要考查勾股定理的實際應用,解題的關鍵是根據(jù)題意在直角三角形中,利用勾股定理進行求解.6、(1)ABD,ACE,;(2)BD的長為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長度;(2)作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長度,再利用勾股定理即可求出CE的長度,由(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論