




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》專題訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、在正方形網(wǎng)格中,∠AOB的位置如圖所示,到∠AOB兩邊距離相等的點(diǎn)應(yīng)是(
)A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q2、如圖,在中,,,垂足分別為D,E,,交于點(diǎn)H,已知,,則的長是(
)A.1 B. C.2 D.3、某同學(xué)把一塊三角形的玻璃打碎成了3塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的方法是(
).A.帶①去 B.帶②去 C.帶③去 D.①②③都帶4、已知,如圖,在△ABC中,D為BC邊上的一點(diǎn),延長AD到點(diǎn)E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結(jié)論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結(jié)論個數(shù)有(
)A.1個 B.2個 C.3個 D.4個5、如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,點(diǎn)P為BC邊上一動點(diǎn),當(dāng)BP=________時,形成的Rt△ABP與Rt△PCD全等.2、如圖,在四邊形中,,,,的延長線與、相鄰的兩個角的平分線交于點(diǎn)E,若,則的度數(shù)為___________.3、如圖,AB=DC,BF=CE,需要補(bǔ)充一個條件,就能使△ABE≌△DCF,下面幾個答案:①AE=DF,②AE∥DF;③AB∥DC,④∠A=∠D.其中正確的是_____.4、如圖,AD,BE是的兩條高線,只需添加一個條件即可證明(不添加其它字母及輔助線),這個條件可以是______(寫出一個即可).5、如圖,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,則∠C1=______°.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.2、如圖,在△ABC中,AB⊥AC,AB=AC,DE是過點(diǎn)A的直線,BD⊥DE于D,CE⊥DE于點(diǎn)E;(1)若B、C在DE的同側(cè)(如圖1所示)求證:DE=BD+CE;(2)若B、C在DE的兩側(cè)(如圖2所示),其他條件不變,則DE,BD,CE具有怎樣的等量關(guān)系?寫出等量關(guān)系,不需證明.3、方格紙上有2個圖形,你能沿著格線把每一個圖形都分成完全相同的兩個部分嗎?請畫出分割線.4、如圖,在△ABC中,∠ABC=90°,AB=CB,點(diǎn)E在邊BC上,點(diǎn)F在邊AB的延長線上,BE=BF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).5、如圖AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.(1)求證AD=AE;(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.-參考答案-一、單選題1、A【解析】【分析】利用到角的兩邊的距離相等的點(diǎn)在角的平分線上進(jìn)行判斷.【詳解】點(diǎn)P、Q、M、N中在∠AOB的平分線上的是M點(diǎn).故選:A.【考點(diǎn)】本題主要考查了角平分線的性質(zhì),根據(jù)正方形網(wǎng)格看出∠AOB平分線上的點(diǎn)是解答問題的關(guān)鍵.2、A【解析】【分析】利用“八字形”圖形推出∠EAH=∠ECB,根據(jù),EH=3,求出AE=4,證明△AEH≌△CEB,得到AE=CE=4,即可求出CH.【詳解】解:∵,,∴∠CEB=,∵∠AHE=∠CHD,∴∠EAH=∠ECB∵,EH=3,∴AE=4,∵∠AEH=∠CEB,∠EAH=∠ECB,EH=BE,∴△AEH≌△CEB,∴AE=CE=4,∴CH=CE-EH=4-3=1,故選A.【考點(diǎn)】此題考查了全等三角形的判定及性質(zhì),“八字形”圖形的應(yīng)用,熟記全等三角形的判定定理是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)三角形全等的判定定理判斷即可.【詳解】帶③去,理由如下:∵③中滿足ASA的條件,∴帶③去,故選C.【考點(diǎn)】本題考查了三角形全等的判定,熟練掌握三角形全等的判定定理是解題的關(guān)鍵.4、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對的圓周角相等知點(diǎn)A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯誤;故選C.【考點(diǎn)】本題主要考查了全等三角形的判定和性質(zhì)、同弦所對的圓周角相等、三角形內(nèi)角和的相關(guān)知識,靈活運(yùn)用所學(xué)知識是解題的關(guān)鍵.5、A【解析】【分析】延長FE交BC于點(diǎn)D,作EG⊥AB、作EH⊥AC,由EF∥AC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠GAE=∠HAE,從而知四邊形BDEG是正方形,再證△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,設(shè)BD=BG=x,則AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再證△CDF∽△CBA,可得,據(jù)此得出EF=DF-DE=.【詳解】解:如圖,延長FE交BC于點(diǎn)D,作EG⊥AB于點(diǎn)G,作EH⊥AC于點(diǎn)H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四邊形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四邊形BDEG是正方形,在△GAE和△HAE中,∵,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,設(shè)BD=BG=x,則AG=AH=6﹣x、CD=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴,即,解得:,則EF=DF﹣DE=,故選A【考點(diǎn)】本題主要考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)及正方形的判定與性質(zhì),熟練掌握角平分線的性質(zhì)和正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.二、填空題1、2【解析】【分析】當(dāng)BP=2時,Rt△ABP≌Rt△PCD,由BC=8可得CP=6,進(jìn)而可得AB=CP,BP=CD,再結(jié)合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【詳解】當(dāng)BP=2時,Rt△ABP≌Rt△PCD.理由如下:∵BC=8,BP=2,∴PC=6,∴AB=PC.∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在△ABP和△PCD中,∵,∴△ABP≌△PCD(SAS).故答案為:2.【考點(diǎn)】本題考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解題的關(guān)鍵.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角相等時,角必須是兩邊的夾角.2、【解析】【分析】先證明Rt△CDA≌Rt△CBA得到,再由角平分線的定義求出∠EDC=45°,最后根據(jù)三角形內(nèi)角和定理求解即可.【詳解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分與∠ADC相鄰的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案為:15°.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,三角形內(nèi)角和定理,角平分線的定義,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.3、①③.【解析】【分析】先求出BE=CF,根據(jù)平行線的性質(zhì)得出∠AEB=∠DFC,再根據(jù)全等三角形的判定定理推出即可.【詳解】∵BF=CE,∴BF+EF=CE+EF,即BE=CF,①在△ABE和△DCF中,,∴△ABE≌△DCF(SSS),故①正確;②∵AE∥DF,∴∠AEB=∠DFC,根據(jù)AB=CD,BE=CF和∠AEB=∠DFC不能推出△ABE≌△DCF,故②錯誤;③∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),故③正確;④根據(jù)AB=CD,BE=CF和∠A=∠D不能推出△ABE≌△DCF,故④錯誤.故答案為:①③.【考點(diǎn)】本題考查了全等三角形的判定問題,掌握全等三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.4、(答案不唯一)【解析】【分析】根據(jù)已知條件可知,故只要添加一條邊相等即可證明.【詳解】解:添加,AD,BE是的兩條高線,,在與中,.故答案為:(答案不唯一).【考點(diǎn)】本題考查了三角形全等的判定,掌握三角形全等的判定是解題的關(guān)鍵.5、30【解析】【分析】本題實(shí)際上是全等三角形的性質(zhì)以及根據(jù)三角形內(nèi)角和等于180°來求角的度數(shù).【詳解】∵△ABC≌△A1B1C1,∴∠C1=∠C,又∵∠C=180°-∠A-∠B=180°-110°-40°=30°,∴∠C1=∠C=30°.故答案為30.【考點(diǎn)】本題考查了全等三角形的性質(zhì);解答時,除必備的知識外,還應(yīng)將條件和所求聯(lián)系起來,即將所求的角與已知角通過全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來.三、解答題1、見解析【解析】【分析】先在線段BC上截取BE=BA,連接DE,根據(jù)BD平分∠ABC,可得∠ABD=∠EBD,根據(jù),可判定△ABD≌△EBD,根據(jù)全等三角形的性質(zhì)可得:AD=ED,∠A=∠BED.再根據(jù)AD=CD,等量代換可得ED=CD,根據(jù)等邊對等角可得:∠DEC=∠C.由∠BED+∠DEC=180°,可得∠A+∠C=180°.【詳解】證明:在線段BC上截取BE=BA,連接DE,如圖所示,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),解決本題的關(guān)鍵是要熟練掌握全等三角形的判定和性質(zhì).2、(1)見解析(2)DE=CE-BD【解析】【分析】(1)根據(jù)AAS證明△ADB≌△CEA,可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出結(jié)論;(2)由條件可以得出∠ADB=∠CEA=90°,∠BAD=∠ACE,再由AB=AC就可以得出△ADB≌△CEA,就可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出DE=CE-BD.(1)∵AB⊥AC,BD⊥DE,CE⊥DE∴∠BAC=90°,∠ADB=∠AEC=90°∴∠ACE+∠CAE=90°,∠BAD+∠CAE=90°,∴∠BAD=∠ACE,在△ADC與△BEC中,∠ADB=∠AEC=90°,∠BAD=∠ACE,AB=AC,∴△ADB≌△CEA(AAS),∴AD=CE,BD=AE,∵DE=AD+AE,∴DE=BD+CE;(2)DE=CE-BD理由:∵BD⊥AD,CE⊥AD,∴∠ADB=∠CEA=90°.∵AB⊥AC,∴∴∠BAD+∠CAE=90°.∵∠CAE+∠ACE=90°,∴∠BAD=∠ACE.在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE.∵AD=AE+ED,∴DE=AD-AE=CE-BD.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時證明三角形全等是解答本題的關(guān)鍵.3、見解析【解析】【分析】觀察第一個圖,圖中共有20個小方格,要分成完全相同兩部分,則每個有10個小格,則可按如圖所示,沿A→B→C→D分割;第二個圖同理沿E→F→G→H→P→Q分割即可.【詳解】解:如圖所示,第一個圖,圖中共有20個小方格,要分成完全相同兩部分,則每個有10個小格,則可按如圖所示,沿A→B→C→D分割;第二個圖同理沿E→F→G→H→P→Q分割即可.將分割出的兩個圖形,逆時針旋轉(zhuǎn)90度,再通過平移,兩部分能夠完全重合,所以分割出的兩部分完全相同.【考點(diǎn)】本題考查圖形全等,掌握全等圖形的定義是解題的關(guān)鍵.4、(1)見解析;(2)∠ACF的度數(shù)為60°【解析】【分析】(1)由∠ABC=90°可得∠CBF=90°,再由SA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025博士英語考試真題及答案解析
- 高層住宅地下室防滲漏施工質(zhì)量管理探討
- 2025年小學(xué)體育理論試卷及答案
- 2025-2026學(xué)年湖南省高一上學(xué)期第一次月考數(shù)學(xué)試卷(原卷及解析)
- 細(xì)胞檢測考試題目及答案
- 2025年婦產(chǎn)科實(shí)訓(xùn)室考試題及答案
- 口語直播考試題目及答案
- 機(jī)械生產(chǎn)計(jì)劃考試題
- DB14T35212025水利工程建設(shè)現(xiàn)場規(guī)范管理指南
- 2025年汽車機(jī)電技師題庫及答案
- 漣源2022年事業(yè)編招聘考試《公共基礎(chǔ)知識》真題及答案解析【可復(fù)制版】
- GB/T 18851.4-2005無損檢測滲透檢測第4部分:設(shè)備
- GB/T 17553.1-1998識別卡無觸點(diǎn)集成電路卡第1部分:物理特性
- 2023年西藏山南雅礱天然飲品有限公司招聘筆試模擬試題及答案解析
- 海南礦產(chǎn)資源概況
- 幻影桌面云管理平臺實(shí)踐指導(dǎo)手冊
- 滬教牛津版英語4A M3U1 In our school:animal school優(yōu)質(zhì)課課件
- (通用版)水利安全員考試試題庫及答案
- 編版一年級下冊 《荷葉圓圓》2022年小學(xué)語文作業(yè)設(shè)計(jì)
- 施工現(xiàn)場安全檢查記錄表(周)以及詳細(xì)記錄
- 汽車配件購銷合同集合
評論
0/150
提交評論