




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
青島版8年級數(shù)學(xué)下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,點A的坐標(biāo)是(2,2),若點P在x軸上,且△AOP是等腰三角形,則點P的坐標(biāo)不可能是()A.(2,0) B.(4,0) C.(﹣,0) D.(3,0)2、如圖,在△ABC中,點D、E分別是AB、AC的中點,AC=10,點F是DE上一點.DF=1.連接AF,CF.若∠AFC=90°,則BC的長是()A.18 B.16 C.14 D.123、一輛轎車和一輛貨車分別從甲、乙兩地同時出發(fā),勻速相向而行,相遇后繼續(xù)前行,已知兩車相遇時轎車比貨車多行駛了90千米,設(shè)行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至轎車到達(dá)乙地這一過程中y與x之間的函數(shù)關(guān)系.則點C的縱坐標(biāo)是()A.260 B.280 C.300 D.3204、若關(guān)于的不等式組有解,且使關(guān)于的分式方程的解為非負(fù)數(shù).則滿足條件的所有整數(shù)的和為(
)A.-9 B.-8 C.-5 D.-45、如果關(guān)于的不等式的解集是,那么數(shù)應(yīng)滿足的條件是(
)A. B. C. D.6、如圖,兩個一次函數(shù)圖象的交點坐標(biāo)為(2,4),則關(guān)于x,y的方程組的解為()A. B. C. D.7、如果關(guān)于x的分式方程的解為整數(shù),且關(guān)于y的不等式組有解,則符合條件的所有整數(shù)a的和為(
)A.-1 B.0 C.1 D.48、如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉(zhuǎn)2020次得到正方形OA2020B2020C2020,如果點A的坐標(biāo)為(1,0),那么點B2020的坐標(biāo)為()A.(﹣1,1) B.(,0) C.(﹣1,﹣1) D.(0,)第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、使二次根式有意義的的取值范圍是__.2、的平方根為_____,的絕對值為____.3、如圖,△ABC中,∠ACB=90°,AC=8,BC=6,點E是AB中點,將△CAE沿著直線CE翻折,得到△CDE,連接BD,則線段BD的長等于______.4、已知函數(shù)y1=-2x與y2=x+b的圖像相交于點A(-1,2),則關(guān)于x的不等式-2x>x+b的解集是_____.5、已知,則x+y=_____.6、D為等腰Rt△ABC斜邊BC上一點(不與B、C重合),DE⊥BC于點D,交直線BA于點E,DF交AC于F,連接EF,BD=nDC,當(dāng)n=_____時,△DEF為等腰直角三角形.7、如果代數(shù)式意義,那么x的取值范圍是_______.三、解答題(7小題,每小題10分,共計70分)1、如圖1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于E.(1)發(fā)現(xiàn):如圖1,連接CE,則△BCE的形狀是_______________,∠CDB=____________°;(2)探索:如圖2,點P為線段AC上一個動點,當(dāng)點P在CD之間運動時,連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ,即△BPQ是等邊三角形;思路:在線段BD上截取點H,使DH=DP,得等邊△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易證△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等邊三角形.試判斷線段DQ、DP、AD之間的關(guān)系,并說明理由;(3)類比:如圖3,當(dāng)點P在AD之間運動時連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ.①試判斷△BPQ的形狀,并說明理由;②若AD=2,設(shè)AP=x,DQ=y,請直接寫出y與x之間的函數(shù)關(guān)系式.2、《九章算術(shù)》是我國古代重要的數(shù)學(xué)著作之一,其中記載了一道“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?譯為:一根直立地面的竹子,原來高一丈,自A處折斷,其竹梢B恰好抵地,抵地處與原竹子底部C距離三尺,問直立處還有多高的竹子?3、計算或解方程:(1).(2).4、如圖,已知△ABC是銳角三角形(AC<AB)(1)①請在圖1中用圓規(guī)和無刻度的直尺作出點O,使O到△ABC三邊距離相等;(不寫作法,保留作圖痕跡)②在①的條件下,若AB=15,AC=13,BC=14,則△ABC中BC邊上的高=______,O到△ABC三邊距離=______.(2)在△ABC中,若點P在△ABC內(nèi)部(含邊界)且滿足PC≤PB≤PA,請在圖2中用圓規(guī)和無刻度的直尺作出所有符合條件的點P組成的區(qū)域(用陰影表示).(不寫作法,保留作圖痕跡)5、如圖,四邊形ABCD是矩形紙片,,,在上取一點,將紙片沿AE翻折,使點D落在BC邊上的點F處.(1)AF的長=______;(2)BF的長=______;(3)CF的長=______;(4)求DE的長.6、某郵遞公司收費方式有兩種:方式一:郵遞物品不超過3千克,按每千克2元收費;超過3千克,3千克以內(nèi)每千克2元,超過的部分按每千克1.5元收費.方式二:基礎(chǔ)服務(wù)費4元,另外每千克加收1元.小王通過該郵遞公司郵寄一箱物品的質(zhì)量為x千克(x>3).(1)請分別直接寫出小王用兩種付費方式所需的郵遞費用y(元)與x(千克)之間的函數(shù)關(guān)系式,并在如圖所示的直角坐標(biāo)系中畫出圖象;(2)若兩種付費方式所需郵遞費用相同,求這箱物品的質(zhì)量;(3)若采用“方式二”所需要郵遞費用比采用“方式一”便宜5元,求這箱物品的質(zhì)量.7、如圖,已知線段,利用尺規(guī)作圖的方法作一個正方形,使為正方形的對角線(保留作圖痕跡,不要求寫作法).-參考答案-一、單選題1、D【解析】【分析】先根據(jù)勾股定理求出OA的長,再根據(jù)①AP=PO;②AO=AP;③AO=OP分別算出P點坐標(biāo)即可.【詳解】解:點A的坐標(biāo)是(2,2),根據(jù)勾股定理可得:OA==,①若AP=PO,可得:P(2,0),②若AO=AP可得:P(4,0),③若AO=OP,可得:P(,0)或(-,0),故點P的坐標(biāo)不可能是:(3,0).故選:D.【點睛】此題主要考查了坐標(biāo)與圖形的性質(zhì),等腰三角形的判定,勾股定理,關(guān)鍵是掌握等腰三角形的判定:有兩邊相等的三角形是等腰三角形,再分情況討論.2、D【解析】【分析】根據(jù)直角三角形的性質(zhì)求出EF,進而求出DE,根據(jù)三角形中位線定理計算,得到答案.【詳解】解:∵∠AFC=90°,點E是AC的中點,AC=10,∴EF=AC=×10=5,∵DF=1,∴DE=DF+EF=6,∵點D、E分別是AB、AC的中點,∴BC=2DE=12,故選:D.【點睛】本題考查的是直角三角形的性質(zhì)、三角形中位線定理,掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),可以求出點C的縱坐標(biāo).【詳解】解:由題意可得,甲乙兩地的距離為150×3=450(千米),∵兩車相遇時轎車比貨車多行駛了90千米,兩車相遇時正好是3小時,∴轎車每小時比貨車多行駛30千米,∴轎車的速度為:[450÷3﹣30]÷2+30=90(千米/小時),貨車的速度為:[450÷3﹣30]÷5=60(千米/小時),轎車到達(dá)乙地用的時間為:450÷90=5(小時),此時兩車間的距離為:60×5=300(千米),∴點C的縱坐標(biāo)是300.故選:C.【點睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.4、A【解析】【分析】先求不等式組的解集,根據(jù)不等式組有解,可得,然后再解出分式方程,再根據(jù)分式方程的解為非負(fù)數(shù),可得,即可求解.【詳解】解:,解不等式①,得:,解不等式②,得:,∵不等式組有解,∴,解得:,,去分母得:,∵分式方程的解為非負(fù)數(shù),且不等于2∴,即且,∴,且∴滿足條件的所有整數(shù)有-5、-4、-3、-2、0、1、2、3,∴滿足條件的所有整數(shù)的和.故選:B.【點睛】本題主要考查了解一元一次不等式組和分式方程,熟練掌握解一元一次不等式組和分式方程的基本步驟是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)一元一次不等式的解可得,由此即可得出答案.【詳解】解:關(guān)于的不等式的解集是,,解得,故選:B.【點睛】本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.6、A【解析】【分析】根據(jù)兩函數(shù)圖象交點坐標(biāo)為兩函數(shù)解析式組成的方程組的解,即可求解.【詳解】解:關(guān)于x,y的方程組可化為,∵兩個一次函數(shù)圖象的交點坐標(biāo)為(2,4),∴方程組的解為.故選:A【點睛】本題主要考查了一次函數(shù)圖象交點坐標(biāo)與二元一次方程組的解得關(guān)系,熟練掌握兩函數(shù)圖象交點坐標(biāo)為兩函數(shù)解析式組成的方程組的解是解題的關(guān)鍵.7、A【解析】【分析】先解分式方程,根據(jù)分式方程有整數(shù)解求解的值,再根據(jù)一元一次不等式組有解,求解的取值范圍,從而可得答案.【詳解】解:關(guān)于x的分式方程的解為整數(shù),則或解得:或或或又則即所以或或由①得:由②得:關(guān)于y的不等式組有解,綜上:或符合條件的所有整數(shù)a的和為故選A【點睛】本題考查的是分式方程的整數(shù)解,根據(jù)一元一次不等式組有解求解參數(shù)的取值范圍,掌握“解分式方程及分式方程的整數(shù)解的含義,一元一次不等式組有解的含義”是解本題的關(guān)鍵.8、C【解析】【分析】根據(jù)正方形的性質(zhì)和旋轉(zhuǎn)性質(zhì)可發(fā)現(xiàn)規(guī)律:點B旋轉(zhuǎn)后對應(yīng)的坐標(biāo)8次一循環(huán),據(jù)此解答即可求解.【詳解】解:連接OB,∵四邊形OABC是正方形,A的坐標(biāo)為(1,0),∴OA=AB=OC=BC=1,∠OAB=90°,∠AOB=45°,∴B(1,1),由勾股定理得:,由旋轉(zhuǎn)性質(zhì)得:OB=OB1=OB2=OB3=…=,∵將正方形OABC繞點O逆時針連續(xù)旋轉(zhuǎn)45°,相當(dāng)于將OB繞點O逆時針連續(xù)旋轉(zhuǎn)45°,∴依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(-1,1),B2(-,0),B4(-1,-1),B5(0,-),B6(1,-1),B7(,0),
B8(1,1),……,發(fā)現(xiàn)規(guī)律:點B旋轉(zhuǎn)后對應(yīng)的坐標(biāo)8次一循環(huán),∵2020=8×252+4,∴點B2020與點B4重合,∴點B2020的坐標(biāo)為(-1,-1),故選:C.【點睛】本題考查坐標(biāo)與旋轉(zhuǎn)規(guī)律問題、正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、勾股定理等知識,熟練掌握正方形的性質(zhì)和旋轉(zhuǎn)性質(zhì),正確得出變化規(guī)律是解答的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)二次根式有意義的條件可得,再解即可.【詳解】解答:解:由題意得:,解得:,故答案為:.【點睛】此題主要考查了二次根式有意義的條件,關(guān)鍵是掌握二次根式中的被開方數(shù)是非負(fù)數(shù).2、
【解析】【分析】先計算出的立方根,再根據(jù)平方根的定義進行求解;根據(jù)絕對值的定義進行求解.【詳解】解:①,的平方根是,的平方根是;②的絕對值是.故答案為:;.【點睛】本題了平方根和絕對值和立方根,理解平方根和絕對值的定義是解答關(guān)鍵.正數(shù)的平方根有兩個,它們互為相反數(shù),負(fù)數(shù)的絕對值是正數(shù).3、【解析】【分析】延長CE交AD于F,過B作BG⊥CE于G,利用△BCE的面積,即可得到BG的長,再根據(jù)△AEF與△BEG全等,即可得到AF的長,進而得到AD的長,再證明再利用勾股定理可得答案.【詳解】解:如圖,延長CE交AD于F,過B作BG⊥CE于G,連接BD,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠ACB=90°,點E是AB中點,∴CE=AE=BE=5,S△BCE=S△ABC,∴CE×BG=AC×BC,即,由折疊可得,CF垂直平分AD,∴∠AFE=90°=∠BGE,又∵∠AEF=∠BEG,AE=BE,∴△AEF≌△BEG(AAS),∴AF=BG=,∴AD=2AF=故答案為【點睛】本題考查了軸對稱以及直角三角形斜邊中線的性質(zhì),線段的垂直平分線的判定與性質(zhì),勾股定理的應(yīng)用,全等三角形的判定與性質(zhì),解題的關(guān)鍵是作輔助線構(gòu)造全等三角形.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.4、x<-1【解析】【分析】在同一坐標(biāo)系中畫出兩個函數(shù)的圖象,根據(jù)圖象即可得出答案.【詳解】解:函數(shù)y1=-2x與y2=x+b的圖象如圖所示:要滿足-2x>x+b,即y1>y2,則圖象上兩直線交點的左邊符合題意,即x<-1,故答案為:x<-1.【點睛】此題考查了一元一次不等式與一次函數(shù)圖象的關(guān)系,用一次函數(shù)的函數(shù)思想求不等式的解集是比較常見的題型,關(guān)鍵在于理解不等關(guān)系反映在函數(shù)圖象上的幾何意義.5、4【解析】【分析】根據(jù)絕對值和算術(shù)平方根的非負(fù)性化簡即可得出答案.【詳解】解:∵,∴,,∴,,∴.故答案為:4.【點睛】此題考查了絕對值和算術(shù)平方根的非負(fù)性,正確求出x,y的值是解題的關(guān)鍵.6、或1【解析】【分析】分兩種情況:情況①:當(dāng)∠DEF=90°時,由題意得出EF∥BC,作FG⊥BC于G,證出△CFG、△BDE是等腰直角三角形,四邊形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,即可得出結(jié)果;情況②:當(dāng)∠EFD=90°時,求出∠DEF=45°,得出E與A重合,D是BC的中點,BD=CD,即可得出結(jié)果.【詳解】解:分兩種情況:情況①:當(dāng)∠DEF=90°時,如圖1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∴∠EDB=∠FGB=90°,∴ED∥FG,∴四邊形EDGF為矩形,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,∴BD=DE,當(dāng)△DEF為等腰直角三角形時,DE=EF,此時四邊形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=DC,∴n=;情況②:當(dāng)∠EFD=90°時,如圖2所示:∵∠EDF=45°,∴∠DEF=45°,此時E與A重合,D是BC的中點,∴BD=CD,∴n=1.故答案為:或1.【點睛】本題考查了等腰直角三角形的判定與性質(zhì)、平行線的判定、正方形的判定與性質(zhì);熟練掌握等腰直角三角形的性質(zhì),分兩種情況討論是解決問題的關(guān)鍵.7、且【解析】【分析】根據(jù)分式的分母不等于零和二次根式的被開方數(shù)是非負(fù)數(shù)進行解答.【詳解】解:∵二次根式的被開方數(shù)是非負(fù)數(shù),∴,解得.又∵分母不等于零,∴,∴且.故答案是:且.【點睛】本題考查了二次根式有意義的條件和分式有意義的條件,解答本題的關(guān)鍵是分式的分母不等于零和二次根式的被開方數(shù)是非負(fù)數(shù).三、解答題1、(1)等邊三角形,60;(2)AD=DQ+DP,見解析;(3)①△BPQ是等邊三角形,見解析;②y=-x+4【解析】【分析】(1)根據(jù)直角三角形的兩銳角互余求得∠ABC=60°,再根據(jù)角平分線的定義求得∠ABD=∠CBD=∠A=30°,則AD=BD,根據(jù)等腰三角形的性質(zhì)證得AE=BE,再由直角三角形斜邊上的中線性質(zhì)得出CE=BE,根據(jù)等邊三角形的判定即可得出結(jié)論;(2)根據(jù)思路和全等三角形的性質(zhì)得出BH=DQ,結(jié)合AD=BD,BD=DH+BH即可解答;(3)延長BD至F,使DF=PD,連接PF,可證得△PDF是等邊三角形,則有PF=PD,∠F=∠PDF=∠DPF=60°,進而可得∠F=∠PDQ=60°,證明∠BPF=∠QPD,利用ASA證明△PBF≌△PQD,得出PB=PQ,BF=DQ,結(jié)合∠BPQ=60°和AD=BD即可得出①②的結(jié)論.(1)解:如圖1,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分線,∴∠ABD=∠CBD=∠ABC=30°,∴∠ABD=∠A,∠CDB=90°-∠CBD=60°,∴AD=BD,又DE⊥AB,∴AE=BE=AB,又∠ACB=90°,∴CE=AB=BE,又∠ABC=60°,∴△BCE是等邊三角形,故答案為:等邊三角形,60;(2)解:AD=DQ+DP,理由為:在線段BD上截取點H,使DH=DP,如圖2,∵∠CDB=60°,∴△DPH為等邊三角形,∴DP=PH,∠DPH=∠DHP=60°,又∠BPQ=60°,∴∠DPQ+∠QPH=∠HPB+∠QPH=60°,∠BHP=120°,∴∠DPQ=∠HPB,∵∠A=30°,DE⊥AB,∴∠QDP=∠A+∠AED=30°+90°=120°,∴∠QDP=∠BHP,在△PDQ≌△PHB中,∴△PDQ≌△PHB(ASA),∴DQ=BH,PQ=PB,∵AD=BD,∠BPQ=60°,∴△BPQ為等邊三角形,AD=BD=BH+DH=DQ+DP,即AD=DQ+DP;(3)解:①△BPQ為等邊三角形,理由為:延長BD至F,使DF=DP,連接PF,設(shè)DQ和BP相交于O,如圖3,∵∠PDF=∠CDB=60°,∴△PDF為等邊三角形,∴PF=DP,∠F=∠PDF=∠DPF=60°,∵∠A=30°,DE⊥AB,
∴∠PDQ=90°-∠A=60°,∴∠F=∠PDQ=60°,∵∠DPF+∠DPB=∠BPQ+∠DPB,又∠BPQ=60°,∴∠BPF=∠QPD,在△PBF和△PQD中,,∴△PBF≌△PQD(ASA),∴PB=PQ,BF=DQ,又∠BPQ=60°,∴△BPQ為等邊三角形;②∵DF=DP,BF=DQ,AD=BD,∴DQ=BF=BD+DF=AD+DP,∵AD=2,AP=x,DQ=y,∴y=2+2-x,即y=-x+4.【點睛】本題考查含30°角的直角三角形的性質(zhì)、直角三角形斜邊上的中線性質(zhì)、角平分線的定義、等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形的外角性質(zhì)等知識,知識點較多,綜合性強,熟練掌握相關(guān)知識的聯(lián)系和運用,利用類比的方法解決問題是解答的關(guān)鍵.2、直立處還有4.55尺的竹子【解析】【分析】竹子折斷后剛好構(gòu)成一直角三角形,設(shè)竹子折斷處離地面AC=x尺,則斜邊為(10?x)尺,利用勾股定理解題即可.【詳解】解:設(shè)AC=x尺,因為AC+AB=10(尺),所以AB=10-x(尺).在Rt△ABC中,∠ACB=90°,所以AC2+BC2=AB2,即x2+32=(10-x)2.解得x=4.55,即AC=4.55(尺).故直立處還有4.55尺的竹子.【點睛】此題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是利用題目信息構(gòu)造直角三角形,從而運用勾股定理解題.3、(1)(2)【解析】【分析】(1)先化簡各式,然后再進行計算即可;(2)按照解分式方程的步驟進行計算即可解答.(1)解:,,,;(2)解:,,解得:,檢驗:當(dāng)時,,是原方程的根.【點睛】本題考查了解分式方程,實數(shù)的運算,零指數(shù)冪,解題的關(guān)鍵是一定要注意解分式方程必須檢驗.4、(1)①見解析;②12,4(2)見解析【解析】【分析】(1)①作兩內(nèi)角的平分線,得交點O;②作邊上的高,設(shè),則,在中,,在中,根據(jù)勾股定理建立方程,求得,進而勾股定理求得,根據(jù)等面積法求O到△ABC三邊距離即可;(2)作的垂直平分線,根據(jù)滿足PC≤PB≤PA,由PB≤PA,點點離點更近,在的垂直平分線靠進點部分,由PC≤PB,點點離點更近,在垂直平分線靠進點的部分,以及與圍成部分,包括邊界.(1)①如圖所示,即為所求;②如圖所示,作邊上的高,AB=15,AC=13,BC=14,設(shè),則在中,在中,即解得由①可知到三邊距離相等,設(shè)到三邊距離為,則即解得故答案為:(2)滿足PC≤PB≤PA的點P組成的區(qū)域(用陰影表示),如圖所示.【點睛】本題考查了作角平分線,垂直平分線,勾股定理,掌握角平分線的性質(zhì)與垂直平分線的性質(zhì)是解題的關(guān)鍵.5、(1)10(2)6(3)4(4)5【解析】【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廢舊船舶拆解作業(yè)人員培訓(xùn)與技能提升方案
- 鄉(xiāng)村文化傳承與創(chuàng)新方案
- 城市道路照明施工安全管理方案
- 牛群健康管理與監(jiān)控方案
- 中藥煎服中藥煎服煎藥工作制度及操作常規(guī)52課件
- 二零二五年度戶外廣告創(chuàng)意策劃與執(zhí)行合同
- 二零二五年度工業(yè)自動化項目承建勞務(wù)承包合同
- 2025版股權(quán)激勵計劃實施與協(xié)同發(fā)展框架協(xié)議
- 二零二五年建筑工程項目管理合同承包標(biāo)準(zhǔn)
- 二零二五年度代購服務(wù)安全協(xié)議
- 安全顧問聘請協(xié)議
- 糖尿病酮癥酸中毒的護理課件
- 設(shè)備材料進場報驗單
- 班組長計劃管理能力考試題庫-上(選擇題)
- (完整版)《機械制造工藝基礎(chǔ)》教案
- 小學(xué)四年級數(shù)學(xué)口算題(每頁60道直接打印).文檔
- 誘思探究理論
- 銑床日常點檢保養(yǎng)記錄表
- 農(nóng)產(chǎn)品貯藏與加工教案
- 04某污水處理廠630kW柔性支架光伏發(fā)電項目建議書
- 2022中國移動通信集團重慶限公司招聘上岸筆試歷年難、易錯點考題附帶參考答案與詳解
評論
0/150
提交評論