




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省原平市中考數(shù)學真題分類(平行線的證明)匯編同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在△ABC中,∠ABC的平分線與△ABC的外角平分線相交于點D,,則∠D的度數(shù)是(
)A.44° B.24° C.22° D.20°2、用反證法證明命題“三角形中必有一個內(nèi)角小于或等于60°”時,首先應(yīng)該假設(shè)這個三角形中()A.有一個內(nèi)角小于60° B.每一個內(nèi)角都小于60°C.有一個內(nèi)角大于60° D.每一個內(nèi)角都大于60°3、如圖,△ABC中,已知∠B=∠C,點E,F(xiàn),P分別是AB,AC,BC上的點,且BE=CP,BP=CF,若∠A=112°,則∠EPF的度數(shù)是(
)A.34° B.36° C.38° D.40°4、如圖,已知△ABC中,BD、CE分別是邊AC、AB上的高,BD與CE交于O點,如果設(shè)∠BAC=n°,那么用含n的代數(shù)式表示∠BOC的度數(shù)是()A.45°+n° B.90°﹣n° C.90°+n° D.180°﹣n°5、將一個直角三角板和一把直尺按如圖所示的方式擺放,若∠2=55°,則∠1的度數(shù)為(
)A.45° B.55° C.25° D.35°6、如圖,、是的外角角平分線,若,則的大小為(
)A. B. C. D.7、如圖,已知△ABC中,BD、CE分別是△ABC的角平分線,BD與CE交于點O,如果設(shè)∠BAC=n°(0<n<180),那么∠BOE的度數(shù)是()A.90°n° B.90°n° C.45°+n° D.180°﹣n°8、給出下列命題,正確的有(
)個①等腰三角形的角平分線、中線和高重合;②等腰三角形兩腰上的高相等;③等腰三角形最小邊是底邊;④等邊三角形的高、中線、角平分線都相等;⑤等腰三角形都是銳角三角形A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,點O是△ABC的三條角平分線的交點,連結(jié)AO并延長交BC于點D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點N,OH⊥BC于點H,有下列結(jié)論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號)2、如圖,一副三角板按如圖放置,則∠DOC的度數(shù)為______.3、如圖,在中,,,,則x=______.4、如圖,在四邊形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分別取一點M、N,使△AMN的周長最小,則∠MAN=_____°.5、如圖所示,請你填寫一個適當?shù)臈l件:_____,使AD∥BC.6、如圖,則∠A+∠B+∠C+∠D+∠E的度數(shù)是__.7、如圖,AB⊥BC于B,AB⊥AD于A,則∠C和∠D的關(guān)系是____.三、解答題(7小題,每小題10分,共計70分)1、已知:如圖1,點在四邊形的邊的延長線上,與交于點,,.(1)求證:ADBC;(2)如圖2,若點在線段上,點在線段上,且,平分,,求的度數(shù).2、如圖所示,已知BO、CO分別是∠ABC與∠ACB的平分線,DE過O點且與BC平行.(1)若∠ABC=52°,∠ACB=60°,求∠BOC的大?。?2)若∠A=60°,求∠BOC的大??;(3)直接寫出∠A與∠BOC的關(guān)系是∠BOC=.(用∠A表示出來)3、如圖,已知BD⊥AC,EF⊥AC,垂足分別為D、F,∠1=∠2,請將證明∠ADG=∠C過程填寫完整.證明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥∴∠ADG=∠C4、如圖,已知直線AB∥DF,∠D+∠B=180°.(1)試說明DE∥BC;(2)若∠AMD=75°,求∠AGC的度數(shù).5、如圖,在中,.(1)如圖①所示,直線過點,于點,于點,且.求證:.(2)如圖②所示,直線過點,交于點,交于點,且,則是否成立?請說明理由.6、如圖,已知AB⊥BC,BC⊥CD,.求證:BE∥CF7、【教材呈現(xiàn)】如圖是華師版七年級下冊數(shù)學教材第76頁的部分內(nèi)容.請根據(jù)教材提示,結(jié)合圖①,將證明過程補充完整.【結(jié)論應(yīng)用】(1)如圖②,在△中,∠=60°,平分∠,平分∠,求∠的度數(shù).(2)如圖③,將△的∠折疊,使點落在△外的點處,折痕為.若∠=,∠=,∠=,則、、滿足的等量關(guān)系為(用、、的代數(shù)式表示).-參考答案-一、單選題1、C【解析】【分析】根據(jù)角平分線定義可得∠CBD=∠ABC,根據(jù)三角形外角性質(zhì)表示出∠DCE,然后整理即可得到∠D=∠A,從而求出度數(shù).【詳解】解:∵BD平分∠ABC,∴∠CBD=∠ABC,∵CD是△ABC的外角平分線,∴∠DCE=∠ACE,∵∠DCE=∠CBD+∠D=∠ABC+∠D,∠ACE=∠A+∠ABC,∴∠ABC+∠D=(∠ABC+∠A).∴∠D=∠A=22°.故選:C.【考點】此題考查了角平分線的計算,三角形外角的性質(zhì),熟記三角形外角性質(zhì)是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)反證法的證明步驟解答即可.【詳解】解:用反證法證明“三角形中必有一個內(nèi)角小于或等于60°”時,應(yīng)先假設(shè)三角形中每一個內(nèi)角都不小于或等于60°,即每一個內(nèi)角都大于60°.故選:D.【考點】本題考查反證法,熟知反證法的證明步驟,正確得出原結(jié)論的反面是解答的關(guān)鍵.3、A【解析】【分析】由三角形內(nèi)角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性質(zhì)便可解答;【詳解】解:△BAC中,∠B=∠C,∠A=112°,則∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故選:A.【考點】本題考查了三角形內(nèi)角和定理,全等三角形的判定和性質(zhì),三角形外角的性質(zhì);掌握全等三角形的判定定理和性質(zhì)是解題關(guān)鍵.4、D【解析】【分析】由垂直的定義得到∠ADB=∠BDC=90,再根據(jù)三角形內(nèi)角和定理得∠ABD=180﹣∠ADB﹣∠A=90﹣n,然后根據(jù)三角形的外角性質(zhì)有∠BOC=∠EBD+∠BEO,計算即可得到∠BOC的度數(shù).【詳解】解:∵BD、CE分別是邊AC,AB上的高,∴∠ADB=∠BDC=90,又∵∠BAC=n,∴∠ABD=180°﹣∠ADB﹣∠A=180﹣90﹣n=90﹣n,∴∠BOC=∠EBD+∠BEO=90°﹣n+90°=180﹣n.故選:D.【考點】本題考查了三角形的外角性質(zhì),垂直的定義以及三角形內(nèi)角和定理,掌握以上性質(zhì)定理是解答本題的關(guān)鍵.5、D【解析】【分析】先對圖形標注,再根據(jù)平行線的性質(zhì)得∠1=∠4,然后根據(jù)直角三角形兩個銳角互余及對頂角相等得出答案.【詳解】如圖,∵,∴∠1=∠4(兩直線平行,內(nèi)錯角相等).∵∠2=∠3(對頂角相等),∴∠1+∠2=∠3+∠4=90°,∴∠1=90°﹣∠2=35°.故選:D.【考點】本題考查平行線的性質(zhì)及三角形內(nèi)角和定理,靈活得選擇平行線的性質(zhì)是解題的關(guān)鍵.6、B【解析】【分析】首先根據(jù)三角形內(nèi)角和與∠P得出∠PBC+∠PCB,然后根據(jù)角平分線的性質(zhì)得出∠ABC和∠ACB的外角和,進而得出∠ABC+∠ACB,即可得解.【詳解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分線∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故選:B.【考點】此題主要考查角平分線以及三角形內(nèi)角和的運用,熟練掌握,即可解題.7、A【解析】【分析】根據(jù)BD、CE分別是△ABC的角平分線和三角形的外角,得到,再利用三角形的內(nèi)角和,得到,代入數(shù)據(jù)即可求解.【詳解】解:∵BD、CE分別是△ABC的角平分線,∴,,∴,∵,∴.故答案選:A.【考點】本題考查三角形的內(nèi)角和定理和外角的性質(zhì).涉及角平分線的性質(zhì).三角形的內(nèi)角和定理:三角形的內(nèi)角和等于.三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和.8、B【解析】【詳解】解:①等腰三角形的頂角角平分線、底邊上的中線和底邊上的高重合,故本選項錯誤;②等腰三角形兩腰上的高相等,本選項正確;③等腰三角形最小邊不一定底邊,故本選項錯誤;④等邊三角形的高、中線、角平分線都相等,本選項正確;⑤等腰三角形可以是鈍角三角形,故本選項錯誤,故選B二、填空題1、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質(zhì)進行計算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點O是△ABC的三條角平分線的交點,BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點】本題主要考查的是三角形與角平分線的綜合運用,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.2、【解析】【分析】根據(jù)題意得:∠ACB=30°,∠ACD=45°,∠D=90°,從而得到∠OCD=15°,再由再由直角三角形兩銳角互余,即可求解.【詳解】解:根據(jù)題意得:∠ACB=30°,∠ACD=45°,∠D=90°,∴∠OCD=∠ACD-∠ACB=15°,∴∠DOC=90°-∠OCD=75°.故答案為:75°【考點】本題主要考查了直角三角形的性質(zhì),根據(jù)題意得到∠ACB=30°,∠ACD=45°,∠D=90°是解題的關(guān)鍵.3、130【解析】【分析】由可得,再由,即可求解;【詳解】解:∵,,∴∵,∴,∴∴故答案為:130.【考點】本題主要考查三角形的內(nèi)角和定理,掌握三角形的內(nèi)角和定理并靈活應(yīng)用是解本題的關(guān)鍵.4、80【解析】【分析】作點A關(guān)于BC、CD的對稱點A1、A2,根據(jù)軸對稱確定最短路線問題,連接A1、A2分別交BC、DC于點M、N,利用三角形的內(nèi)角和定理列式求出∠A1+∠A2,再根據(jù)軸對稱的性質(zhì)和角的和差關(guān)系即可得∠MAN.【詳解】如圖,作點A關(guān)于BC、CD的對稱點A1、A2,連接A1、A2分別交BC、DC于點M、N,連接AM、AN,則此時△AMN的周長最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵點A關(guān)于BC、CD的對稱點為A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案為:80.【考點】本題考查了軸對稱的最短路徑問題,利用軸對稱將三角形周長問題轉(zhuǎn)化為兩點間線段最短問題是解決本題的關(guān)鍵.5、∠FAD=∠FBC(答案不唯一)【解析】【詳解】根據(jù)同位角相等,兩直線平行,可填∠FAD=∠FBC;根據(jù)內(nèi)錯角相等,兩直線平行,可填∠ADB=∠DBC;根據(jù)同旁內(nèi)角互補,兩直線平行,可填∠DAB+∠ABC=180°.故答案為:∠FAD=∠FBC;或∠ADB=∠DBC;或∠DAB+∠ABC=180°.6、180°【解析】【分析】由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,得∠4=∠A+∠2,∠2=∠D+∠C,進而利用三角形的內(nèi)角和定理求解.【詳解】解:如圖可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∵∠B+∠E+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故答案為:180°.【考點】本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理,解答的關(guān)鍵是溝通外角和內(nèi)角的關(guān)系.7、互補【解析】【詳解】因為AB⊥BC,AB⊥AD,所以,所以AD//BC,所以,即∠C和∠D的關(guān)系是互補.故答案:互補.三、解答題1、(1)見解析(2)40°【解析】【分析】(1)由可判定,得到,等量代換得出,即可判定;(2)根據(jù)角平分線的定義得到,根據(jù)平行線的性質(zhì)得出,由,得出,再由對頂角相等即可得解.(1)證明:,,,,,;(2)解:如圖,平分,,即,由(1)知,,,,,,,,,.【考點】此題考查了平行線的判定與性質(zhì)、角平分線的定義,利用數(shù)形結(jié)合的思想是解題的關(guān)鍵.2、(1)124°(2)120°(3)90°+【解析】【分析】(1)根據(jù)角平分線定義求出∠OBC=,∠OCB=,然后利用三角形內(nèi)角和公式求解即可;(2)根據(jù)∠A=60°,結(jié)合三角形內(nèi)角和得出∠ABC+∠ACB=180°-∠A=120°,然后根據(jù)角平分線得出∠OBC=,∠OCB=,再利用三角形內(nèi)角和得出∠BOC=180°-∠OBC-∠OCB=180°-即可;(3)先根據(jù)平分線定義得出∠OBC=,∠OCB=,然后根據(jù)三角形內(nèi)角和公式得出∠BOC=180°-,再利用∠A表示即可.(1)解:∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°-26°-30°=124°;(2)解:∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=120°,∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°--=180°-,=180°-60°=120°;(3)解:∠BOC=90°+.∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°--=180°-=180°-=90°+.故答案為:90°+.【考點】本題考查三角形內(nèi)角和公式,角平分線定義,熟練掌握三角形內(nèi)角和公式,角平分線定義是解題關(guān)鍵.3、垂直的定義;EF;兩直線平行,同位角相等;BC;兩直線平行,同位角相等.【解析】【分析】根據(jù)垂直求出∠BDC=∠EFC=90°,根據(jù)平行線的判定得出BD∥EF,根據(jù)平行線的性質(zhì)得出∠2=∠3,求出∠1=∠3,根據(jù)平行線的判定得出DG∥BC即可.【詳解】證明:∵BD⊥AC,EF⊥AC,∴∠BDC=∠EFC=90°,垂直的定義∴BD∥EF,∴∠2=∠3(兩直線平行,同位角相等),又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥BC,∴∠ADG=∠C.兩直線平行,同位角相等【考點】本題考查了平行線的性質(zhì)和判定,能熟練地運用定理進行推理是解此題的關(guān)鍵,注意:平行線的性質(zhì)有:①兩直線平行,同位角相等,②兩直線平行,內(nèi)錯角相等,③兩直線平行,同旁內(nèi)角互補,反之亦然.4、(1)證明見解析;(2)105°.【解析】【詳解】(1)根據(jù)平行線的性質(zhì)得出∠D+∠BHD=180°,等量代換得出∠B=∠DHB,根據(jù)平行線的判定得出即可;(2)根據(jù)平行線的性質(zhì)求出∠AGB=∠AMD=75°,再根據(jù)鄰補角的定義即可求出∠AGC的度數(shù).(1)證明:∵AB∥DF,
∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC.(2)解:∵DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.【考點】本題涉及的知識點是平行線的判定及性質(zhì).熟練掌握平行線的性質(zhì)及判定并能準確識圖是解題的關(guān)鍵.5、(1)見解析;(2)仍然成立,理由見解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年跨境電商進口商品質(zhì)量安全檢測服務(wù)合同:保障消費者權(quán)益提升進口商品品質(zhì)
- 2025年校園網(wǎng)絡(luò)布線及設(shè)備更新維護承包合同
- 海上日出課件簡介
- 2025年觀賞魚種養(yǎng)殖基地品牌授權(quán)與市場推廣合作協(xié)議
- 2025年新型建筑專用腳手架租賃及施工一體化服務(wù)合同
- 2025年歷史文化遺址修復油漆施工進度跟蹤與文化保護合同
- 2025年度綜合性體育館設(shè)施使用權(quán)及維護保養(yǎng)服務(wù)租賃協(xié)議
- 2025年度全自動立體倉庫使用權(quán)租賃協(xié)議書
- 2025年度城市智慧交通管理系統(tǒng)銷售與區(qū)域推廣服務(wù)協(xié)議
- 2025年城市綜合體購物中心地下停車設(shè)施建設(shè)與經(jīng)營管理合同
- 八年級年級主任工作計劃
- 英漢互譯單詞練習打印紙
- 四川JS-004竣工驗收報告
- 花卉栽植施工方案
- 水工閘門課件
- 水泥生產(chǎn)企業(yè)生產(chǎn)安全事故綜合應(yīng)急預案
- 全自動血液細胞分析儀產(chǎn)品技術(shù)要求深圳邁瑞
- 找對英語學習方法的第一本書
- 《諾丁山》經(jīng)典臺詞
- 對鐵路機車乘務(wù)員規(guī)章培訓的探討與實踐
- 臨床醫(yī)學實驗室 儀器設(shè)備一覽表格模板
評論
0/150
提交評論