難點解析云南省騰沖市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克練習(xí)題(含答案詳解)_第1頁
難點解析云南省騰沖市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克練習(xí)題(含答案詳解)_第2頁
難點解析云南省騰沖市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克練習(xí)題(含答案詳解)_第3頁
難點解析云南省騰沖市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克練習(xí)題(含答案詳解)_第4頁
難點解析云南省騰沖市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克練習(xí)題(含答案詳解)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省騰沖市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列命題:①對頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有(

).A.①②③④ B.①④ C.②④ D.①②④2、如圖,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,則∠AEB的度數(shù)為()A.100° B.110° C.120° D.130°3、如圖,直線,等邊三角形的頂點、分別在直線和上,邊與直線所夾的銳角為,則的度數(shù)為(

)A. B. C. D.4、如圖,△ABC中,已知∠B=∠C,點E,F(xiàn),P分別是AB,AC,BC上的點,且BE=CP,BP=CF,若∠A=112°,則∠EPF的度數(shù)是(

)A.34° B.36° C.38° D.40°5、如圖,,的角平分線交于點,若,,則的度數(shù)(

)A. B. C. D.6、如圖,將三角形紙片沿折疊,當(dāng)點落在四邊形的外部時,測量得,,則的度數(shù)為(

)A. B. C. D.7、如圖,已知△ABC中,BD、CE分別是邊AC、AB上的高,BD與CE交于O點,如果設(shè)∠BAC=n°,那么用含n的代數(shù)式表示∠BOC的度數(shù)是()A.45°+n° B.90°﹣n° C.90°+n° D.180°﹣n°8、如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、下列說法:(1)兩點之間的所有連線中,線段最短;(2)相等的角是對頂角;(3)過一點有且僅有一條直線與已知直線平行;(4)長方體是四棱柱.其中正確的有______(填正確說法的序號).2、如圖,四邊形ABCD中,點M,N分別在AB,BC上,將沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,則∠B=___°.3、下圖是某工人加工的一個機器零件(數(shù)據(jù)如圖),經(jīng)過測量不符合標(biāo)準(zhǔn).標(biāo)準(zhǔn)要求是:,且、、保持不變?yōu)榱诉_(dá)到標(biāo)準(zhǔn),工人在保持不變情況下,應(yīng)將圖中____(填“增大”或“減小”)_____度.4、如圖,在中,,將沿直線m翻折,點B落在點D的位置,則__________.5、兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果___________,那么這兩條直線平行.這個判定方法可簡述為:_________,兩直線平行.6、如圖,在四邊形中,,,,的延長線與、相鄰的兩個角的平分線交于點E,若,則的度數(shù)為___________.7、如圖,..∵,∴.∴.∴.三、解答題(7小題,每小題10分,共計70分)1、如圖,AB∥CD,點E是CD上一點,∠AEC=42°,EF平分∠AED交AB于點F,求∠AFE的度數(shù).2、如圖,直線分別與直線,交于點,.平分,平分,且∥.求證:∥.3、直線MN與直線PQ相交于O,∠POM=60°,點A在射線OP上運動,點B在射線OM上運動.(1)如圖1,∠BAO=70°,已知AE、BE分別是∠BAO和∠ABO角的平分線,試求出∠AEB的度數(shù).(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.(3)在(2)的條件下,在△CDE中,如果有一個角是另一個角的2倍,請直接寫出∠DCE的度數(shù).4、用反證法證明:一個三角形中不能有兩個角是直角.5、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).6、△ABC中,AD是∠BAC的角平分線,AE是△ABC的高.(1)如圖1,若∠B=40°,∠C=60°.求∠DAE的度數(shù).(2)如圖2(∠B<∠C),試說明∠DAE與∠B、∠C的數(shù)量關(guān)系.

(3)拓展:如圖3,四邊形ABDC中,AE是∠BAC的角平分線,DA是∠BDC的角平分線,猜想:∠DAE與∠B、∠C的數(shù)量關(guān)系是否改變,說明理由.7、如圖所示,AE為△ABC的角平分線,CD為△ABC的高,若∠B=30°,∠ACB為70°.(1)求∠CAF的度數(shù);(2)求∠AFC的度數(shù).-參考答案-一、單選題1、D【解析】【分析】對于①,根據(jù)對頂角的性質(zhì)即可判斷命題正誤;對于②,根據(jù)平行線的判定定理判斷命題的正誤;對于③,根據(jù)絕對值的性質(zhì)知a=b,據(jù)此判斷命題③的正誤;對于④,把x=2代入2|x|-1可得2|x|-1=3,據(jù)此判斷命題的正誤,綜上可選出正確答案.【詳解】解:對于①,由對頂角的性質(zhì)知,對頂角相等,故命題①為真命題;對于②,同位角相等,兩直線平行,故命題②為真命題;對于③,如果|a|=|b|,則a=b,故命題③為假命題;對于④,若x=2,則2|x|-1=3,故④為真命題.綜上可知,命題是真命題的有①②④.故選D.【考點】本題主要考查命題,熟知平行線及絕對值等各知識是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)兩直線平行,可得∠BAD=∠ABE=20°,因為BE平分∠ABC,所以∠ABE=∠EBC=20°,所以得到∠ABC=40°,從而求出∠EAB=50°,根據(jù)三角形內(nèi)角和即可得到∠AEB的度數(shù).【詳解】解:∵BE∥AD∴∠BAD=∠ABE=20°∵BE平分∠ABC∴∠ABE=∠EBC=20°∴∠ABC=40°∵∠C=90°∴∠EAB=50°∴∠AEB=180°-∠EAB-∠ABE=180°-50°-20°=110°故選B.【考點】本題考查了平行線的性質(zhì),角平分線和三角形內(nèi)角和,能夠找出內(nèi)錯角以及熟悉三角形內(nèi)角和為180°是解決本題的關(guān)鍵.3、C【解析】【分析】根據(jù),可以得到,,再根據(jù)等邊三角形可以計算出的度數(shù).【詳解】解:如圖所示:根據(jù)∴,又∵是等邊三角形∴∴∴故選:C.【考點】本題主要考查了平行線的性質(zhì),即兩直線平行內(nèi)錯角相等以及兩直線平行同位角相等;明確平行線的性質(zhì)是解題的關(guān)鍵.4、A【解析】【分析】由三角形內(nèi)角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性質(zhì)便可解答;【詳解】解:△BAC中,∠B=∠C,∠A=112°,則∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故選:A.【考點】本題考查了三角形內(nèi)角和定理,全等三角形的判定和性質(zhì),三角形外角的性質(zhì);掌握全等三角形的判定定理和性質(zhì)是解題關(guān)鍵.5、A【解析】【分析】法一:延長PC交BD于E,設(shè)AC、PB交于F,根據(jù)三角形的內(nèi)角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根據(jù)三角形的外角性質(zhì)得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD?∠D,根據(jù)PB、PC是角平分線得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A?∠D,代入即可求出∠P.法二:延長DC,與AB交于點E.設(shè)AC與BP相交于O,則∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入計算即可.【詳解】解:法一:延長PC交BD于E,設(shè)AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD?∠D,∴∠P+∠PBE=∠PCD?∠D,∴2∠P+∠PCF+∠PBE=∠A?∠D+∠ABF+∠PCD,∵PB、PC是角平分線∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A?∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD?∠ABD=58°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°?(∠ACD?∠ABD)=19°.故選A.【考點】本題主要考查對三角形的內(nèi)角和定理,三角形的外角性質(zhì),對頂角的性質(zhì),角平分線的性質(zhì)等知識點的理解和掌握,能熟練地運用這些性質(zhì)進(jìn)行計算是解此題的關(guān)鍵.6、B【解析】【分析】根據(jù)折疊∠A′=∠A,根據(jù)鄰補角性質(zhì)求出∠A′DA,再根據(jù)三角形外角性質(zhì)即可求解.【詳解】解:根據(jù)折疊可知∠A′=∠A,∵∠1=70°,∴∠A′DA=180°-∠1=110°,∴根據(jù)三角形外角∠A′=∠2-∠A′DA=152°-110°=42°,∴∠A=42°.故選B.【考點】本題考查折疊性質(zhì),鄰補角性質(zhì),三角形外角性質(zhì),掌握折疊性質(zhì),鄰補角性質(zhì),三角形外角性質(zhì)是解題關(guān)鍵.7、D【解析】【分析】由垂直的定義得到∠ADB=∠BDC=90,再根據(jù)三角形內(nèi)角和定理得∠ABD=180﹣∠ADB﹣∠A=90﹣n,然后根據(jù)三角形的外角性質(zhì)有∠BOC=∠EBD+∠BEO,計算即可得到∠BOC的度數(shù).【詳解】解:∵BD、CE分別是邊AC,AB上的高,∴∠ADB=∠BDC=90,又∵∠BAC=n,∴∠ABD=180°﹣∠ADB﹣∠A=180﹣90﹣n=90﹣n,∴∠BOC=∠EBD+∠BEO=90°﹣n+90°=180﹣n.故選:D.【考點】本題考查了三角形的外角性質(zhì),垂直的定義以及三角形內(nèi)角和定理,掌握以上性質(zhì)定理是解答本題的關(guān)鍵.8、D【解析】【分析】同位角相等,兩直線平行,同旁內(nèi)角互補,兩直線平行,根據(jù)平行線的判定方法逐一分析即可.【詳解】解:(同位角相等,兩直線平行),故A不符合題意;∠2+∠3=180°,(同旁內(nèi)角互補,兩直線平行)故B不符合題意;(同位角相等,兩直線平行)故C不符合題意;∠1+∠4=180°,不是同旁內(nèi)角,也不能利用等量代換轉(zhuǎn)換成同旁內(nèi)角,所以不能判定故D符合題意;故選D【考點】本題考查的是平行線的判定,對頂角相等,掌握“平行線的判定方法”是解本題的關(guān)鍵.二、填空題1、(1)、(4).【解析】【分析】根據(jù)所學(xué)公理和性質(zhì)解答即可.【詳解】解:(1)兩點之間的所有連線中,線段最短,故本說法正確;(2)相等的角不一定是對頂角,但對頂角相等,故本說法錯誤;(3)應(yīng)為過直線外一點有且僅有一條直線與已知直線平行,故本說法錯誤;(4)長方體是四棱柱,正確.故答案為(1)、(4).【考點】本題是對數(shù)學(xué)語言的嚴(yán)謹(jǐn)性的考查,記憶數(shù)學(xué)公理、性質(zhì)概念等一定要做的嚴(yán)謹(jǐn).2、95【解析】【詳解】∵M(jìn)F//AD,F(xiàn)N//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案為:953、

減小

15【解析】【分析】延長EF到H與CD交于H,先利用對頂角的性質(zhì)和三角形內(nèi)角和定理求出DCE=60°,然后根據(jù)三角形外角的性質(zhì)得到∠DHE=∠E+∠DCE=100°,∠DFE=∠D+∠DHF,由此求解即可.【詳解】解:如圖,延長EF到H與CD交于H,∵∠DCE=∠ACB=180°-∠A-∠B,∠A=70°,∠B=50°,∴∠DCE=60°,∴∠DHE=∠E+∠DCE=100°,∵∠DFE=∠D+∠DHF,∴∠D=∠DFE-∠DHF=120°-100°=20°,∴∠D從35°減小到20°,減小了15°,故答案為:減小,15.【考點】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),對頂角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.4、【解析】【分析】根據(jù)折疊得出∠D=∠B=28°,根據(jù)三角形的外角性質(zhì)得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【詳解】解:如圖,∵∠B=28°,將△ABC沿直線m翻折,點B落在點D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1-∠2=∠B+∠D=28°+28°=56°,故答案為:.【考點】本題考查了三角形的外角性質(zhì)和折疊的性質(zhì),能熟記三角形的外角性質(zhì)是解此題的關(guān)鍵,注意:三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.5、

同位角相等(答案不唯一)

同位角相等(答案不唯一)【解析】【分析】根據(jù)平行線的判定定理解答即可.【詳解】兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.這個判定方法可簡述為:同位角相等,兩直線平行.故答案為:同位角相等,同位角相等.【考點】本題主要考查平行線的判定定理,屬于基礎(chǔ)題,熟練掌握平行線的判定定理是解題關(guān)鍵.6、【解析】【分析】先證明Rt△CDA≌Rt△CBA得到,再由角平分線的定義求出∠EDC=45°,最后根據(jù)三角形內(nèi)角和定理求解即可.【詳解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分與∠ADC相鄰的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案為:15°.【考點】本題主要考查了全等三角形的性質(zhì)與判定,三角形內(nèi)角和定理,角平分線的定義,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.7、、、【解析】【分析】根據(jù)兩直線平行的性質(zhì)定理,結(jié)合三角形內(nèi)角和定理推理即可得到正確結(jié)果.【詳解】解:∵,∴∴∴∴故答案為:、、【考點】本題考查平行線性質(zhì)定理以及三角形內(nèi)角和定理,牢記相關(guān)定理內(nèi)容并能靈活應(yīng)用是解題的重點.三、解答題1、∠AFE=69°.【解析】【分析】由平角求出∠AED的度數(shù),由角平分線得出∠DEF的度數(shù),再由平行線的性質(zhì)即可求出∠AFE的度數(shù).【詳解】解:∵∠AEC=42°,∴∠AED=180°-∠AEC=138°.∵EF平分∠AED,∴∠DEF=∠AED=69°.∵AB∥CD,∴∠AFE=∠DEF=69°.2、證明見解析.【解析】【分析】先根據(jù)角平分線的定義可得,再根據(jù)平行線的性質(zhì)可得,從而可得,然后根據(jù)平行線的判定即可得證.【詳解】平分,平分,即.【考點】本題考查了平行線的判定與性質(zhì)、角平分線的定義等知識點,熟記平行線的判定與性質(zhì)是解題關(guān)鍵.3、(1)∠AEB的度數(shù)為120°;(2)∠CED的大小不發(fā)生變化,其值為60°;(3)∠DCE的度數(shù)為40°或80°.【解析】【分析】(1)由∠POM=60°,∠BAO=70°,可求出∠ABO的值,根據(jù)AE、BE分別是∠BAO和∠ABO的角平分線,可得∠EAB和∠EBA的值,在△EAB中,根據(jù)三角形內(nèi)角和即可得出∠AEB的大?。唬?)不發(fā)生變化,延長BC、AD交于點F,根據(jù)角平分線的定義以及三角形內(nèi)角和可得∠F=90°-∠AOB,∠CED=90°-∠F,即可得出∠CED的度數(shù);(3)分三種情況求解即可.【詳解】解:(1)∵∠POM=60°,∠BAO=70°,∴∠ABO=50°.∵AE、BE分別是∠BAO和∠ABO的角平分線,∴∠EAB=∠OAB=35°,∠EBA=∠OBA=25°,∴∠AEB=180°-35°-25°=120°;(2)不發(fā)生變化,理由如下:如圖,延長BC、AD交于點F,∵點D、C分別是∠PAB和∠ABM的角平分線上的兩點,∴∠FAB=∠PAB=(180°-∠OAB),∠FBA=∠MBA=(180°-∠OBA),∴∠FAB+∠FBA=(180°-∠OAB)+(180°-∠OBA)=(180°+∠AOB)=90°+∠AOB,∵∠AOB=60°,∴∠F=180°-(∠FAB+∠FBA)=90°-∠AOB=60°,同理可求∠CED=90°-∠F=60°;(3)①當(dāng)∠DCE=2∠E時,顯然不符合題意;②當(dāng)∠DCE=2∠CDE時,∠DCE==80°;③當(dāng)∠DCE=∠CDE時,∠DCE==40°,綜上可知,∠DCE的度數(shù)40°或80°.【考點】本題考查角平分線的定義,三角形內(nèi)角和定理,以及分類討論的數(shù)學(xué)思想,解題的關(guān)鍵是熟練掌握三角形的內(nèi)角和的定理.4、見解析.【解析】【分析】假設(shè)三角形的三個內(nèi)角中有兩個(或三個)直角,不妨設(shè),則,這與三角形內(nèi)角和為相矛盾,不成立,由此即可證明.【詳解】證明:假設(shè)三角形的三個內(nèi)角中有兩個(或三個)直角,不妨設(shè),則,這與三角形內(nèi)角和為相矛盾,不成立,所以一個三角形中不能有兩個直角.【考點】本題主要考查了反證法,解題的關(guān)鍵在于能夠熟練掌握反證法的步驟.5、(1)見解析;(2)【解析】【分析】(1)通過證明,即可求證;(2)利用三角形外角的性質(zhì)可得,由(1)可得,從而得到,利用三角形內(nèi)角和的性質(zhì)即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質(zhì)可得∴,∴,【考點】此題考查了全等三角形的判定與性質(zhì),三角形內(nèi)角的性質(zhì)以及三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì).6、(1)10°;(2)∠DAE∠C∠B,見解析;(3)不變,見解析【解析】【分析】(1)根據(jù)三角形的內(nèi)角和定理可求得∠BAC=80°,由角平分線的定義可得∠CAD的度數(shù),利用三角形的高線可求∠CAE得度數(shù),進(jìn)而求解即可得出結(jié)論;(2)根據(jù)(1)的推理方法可求解∠DAE、∠B、∠C的數(shù)量關(guān)系;(3)連接BC交AD于F,過點A作AM⊥BC于M,過點D作DN⊥BC于N,根據(jù)角平分線的定義得到∠EAM(∠ACB﹣∠ABC),同理,∠ADN(∠BCD﹣∠CBD),求得∠MAD=∠ADN,根據(jù)角的和差即可得到結(jié)論.【詳解】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分線,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論