



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁,共2頁四川航天職業(yè)技術(shù)學(xué)院《深度學(xué)習(xí)與應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在構(gòu)建機(jī)器學(xué)習(xí)模型時(shí),選擇合適的正則化方法可以防止過擬合。假設(shè)我們正在訓(xùn)練一個(gè)邏輯回歸模型。以下關(guān)于正則化的描述,哪一項(xiàng)是錯(cuò)誤的?()A.L1正則化會(huì)使部分模型參數(shù)變?yōu)?,從而實(shí)現(xiàn)特征選擇B.L2正則化通過對(duì)模型參數(shù)的平方和進(jìn)行懲罰,使參數(shù)值變小C.正則化參數(shù)越大,對(duì)模型的約束越強(qiáng),可能導(dǎo)致模型欠擬合D.同時(shí)使用L1和L2正則化(ElasticNet)總是比單獨(dú)使用L1或L2正則化效果好2、假設(shè)正在進(jìn)行一項(xiàng)關(guān)于客戶購買行為預(yù)測(cè)的研究。我們擁有大量的客戶數(shù)據(jù),包括個(gè)人信息、購買歷史和瀏覽記錄等。為了從這些數(shù)據(jù)中提取有價(jià)值的特征,以下哪種方法通常被廣泛應(yīng)用?()A.主成分分析(PCA)B.線性判別分析(LDA)C.因子分析D.獨(dú)立成分分析(ICA)3、在強(qiáng)化學(xué)習(xí)中,智能體通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略。如果智能體在某個(gè)狀態(tài)下采取的行動(dòng)總是導(dǎo)致低獎(jiǎng)勵(lì),它應(yīng)該()A.繼續(xù)采取相同的行動(dòng),希望情況會(huì)改善B.隨機(jī)選擇其他行動(dòng)C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動(dòng)D.調(diào)整策略以避免采取該行動(dòng)4、假設(shè)正在研究一個(gè)時(shí)間序列預(yù)測(cè)問題,數(shù)據(jù)具有季節(jié)性和趨勢(shì)性。以下哪種模型可以同時(shí)處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以5、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個(gè)機(jī)器人要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎(jiǎng)勵(lì)或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過估計(jì)狀態(tài)-動(dòng)作值來選擇最優(yōu)動(dòng)作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計(jì)算策略的梯度來更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對(duì)環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動(dòng)作就能找到最優(yōu)策略6、機(jī)器學(xué)習(xí)是一門涉及統(tǒng)計(jì)學(xué)、計(jì)算機(jī)科學(xué)和人工智能的交叉學(xué)科。它的目標(biāo)是讓計(jì)算機(jī)從數(shù)據(jù)中自動(dòng)學(xué)習(xí)規(guī)律和模式,從而能夠進(jìn)行預(yù)測(cè)、分類、聚類等任務(wù)。以下關(guān)于機(jī)器學(xué)習(xí)的說法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)三大類。監(jiān)督學(xué)習(xí)需要有標(biāo)注的訓(xùn)練數(shù)據(jù),無監(jiān)督學(xué)習(xí)則不需要標(biāo)注數(shù)據(jù)。那么,下列關(guān)于機(jī)器學(xué)習(xí)的說法錯(cuò)誤的是()A.決策樹是一種監(jiān)督學(xué)習(xí)算法,可以用于分類和回歸任務(wù)B.K均值聚類是一種無監(jiān)督學(xué)習(xí)算法,用于將數(shù)據(jù)分成K個(gè)聚類C.強(qiáng)化學(xué)習(xí)通過與環(huán)境的交互來學(xué)習(xí)最優(yōu)策略,適用于機(jī)器人控制等領(lǐng)域D.機(jī)器學(xué)習(xí)算法的性能只取決于算法本身,與數(shù)據(jù)的質(zhì)量和數(shù)量無關(guān)7、假設(shè)要開發(fā)一個(gè)自然語言處理的系統(tǒng),用于文本情感分析,判斷一段文字是積極、消極還是中性??紤]到文本的多樣性和語義的復(fù)雜性。以下哪種技術(shù)和方法可能是最有效的?()A.基于詞袋模型的樸素貝葉斯分類器,計(jì)算簡(jiǎn)單,但忽略了詞序和上下文信息B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),能夠處理序列數(shù)據(jù),但可能存在梯度消失或爆炸問題C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),改進(jìn)了RNN的長(zhǎng)期依賴問題,對(duì)長(zhǎng)文本處理能力較強(qiáng),但模型較復(fù)雜D.基于Transformer架構(gòu)的預(yù)訓(xùn)練語言模型,如BERT或GPT,具有強(qiáng)大的語言理解能力,但需要大量的計(jì)算資源和數(shù)據(jù)進(jìn)行微調(diào)8、在處理不平衡數(shù)據(jù)集時(shí),以下關(guān)于解決數(shù)據(jù)不平衡問題的方法,哪一項(xiàng)是不正確的?()A.過采樣方法通過增加少數(shù)類樣本的數(shù)量來平衡數(shù)據(jù)集B.欠采樣方法通過減少多數(shù)類樣本的數(shù)量來平衡數(shù)據(jù)集C.合成少數(shù)類過采樣技術(shù)(SMOTE)通過合成新的少數(shù)類樣本來平衡數(shù)據(jù)集D.數(shù)據(jù)不平衡對(duì)模型性能沒有影響,不需要采取任何措施來處理9、在一個(gè)圖像生成的任務(wù)中,需要根據(jù)給定的描述或條件生成逼真的圖像??紤]到生成圖像的質(zhì)量、多樣性和創(chuàng)新性。以下哪種生成模型可能是最有潛力的?()A.生成對(duì)抗網(wǎng)絡(luò)(GAN),通過對(duì)抗訓(xùn)練生成逼真的圖像,但可能存在模式崩潰和訓(xùn)練不穩(wěn)定的問題B.變分自編碼器(VAE),能夠?qū)W習(xí)數(shù)據(jù)的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴(kuò)散模型,通過逐步去噪生成圖像,具有較高的質(zhì)量和多樣性,但計(jì)算成本較高10、假設(shè)正在研究一個(gè)語音合成任務(wù),需要生成自然流暢的語音。以下哪種技術(shù)在語音合成中起到關(guān)鍵作用?()A.聲碼器B.文本到語音轉(zhuǎn)換模型C.語音韻律模型D.以上技術(shù)都很重要11、假設(shè)正在進(jìn)行一個(gè)目標(biāo)檢測(cè)任務(wù),例如在圖像中檢測(cè)出人物和車輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測(cè)中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測(cè)12、深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)重要分支,它利用深度神經(jīng)網(wǎng)絡(luò)進(jìn)行學(xué)習(xí)。以下關(guān)于深度學(xué)習(xí)的說法中,錯(cuò)誤的是:深度神經(jīng)網(wǎng)絡(luò)具有多層結(jié)構(gòu),可以自動(dòng)學(xué)習(xí)數(shù)據(jù)的特征表示。深度學(xué)習(xí)在圖像識(shí)別、語音識(shí)別等領(lǐng)域取得了巨大的成功。那么,下列關(guān)于深度學(xué)習(xí)的說法錯(cuò)誤的是()A.卷積神經(jīng)網(wǎng)絡(luò)是一種專門用于處理圖像數(shù)據(jù)的深度神經(jīng)網(wǎng)絡(luò)B.循環(huán)神經(jīng)網(wǎng)絡(luò)適用于處理序列數(shù)據(jù),如文本、時(shí)間序列等C.深度神經(jīng)網(wǎng)絡(luò)的訓(xùn)練需要大量的計(jì)算資源和時(shí)間D.深度學(xué)習(xí)算法可以自動(dòng)學(xué)習(xí)到最優(yōu)的特征表示,不需要人工設(shè)計(jì)特征13、在進(jìn)行特征選擇時(shí),有多種方法可以評(píng)估特征的重要性。假設(shè)我們有一個(gè)包含多個(gè)特征的數(shù)據(jù)集。以下關(guān)于特征重要性評(píng)估方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.信息增益通過計(jì)算特征引入前后信息熵的變化來衡量特征的重要性B.卡方檢驗(yàn)可以檢驗(yàn)特征與目標(biāo)變量之間的獨(dú)立性,從而評(píng)估特征的重要性C.隨機(jī)森林中的特征重要性評(píng)估是基于特征對(duì)模型性能的貢獻(xiàn)程度D.所有的特征重要性評(píng)估方法得到的結(jié)果都是完全準(zhǔn)確和可靠的,不需要進(jìn)一步驗(yàn)證14、假設(shè)我們有一個(gè)時(shí)間序列數(shù)據(jù),想要預(yù)測(cè)未來的值。以下哪種機(jī)器學(xué)習(xí)算法可能不太適合()A.線性回歸B.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)C.隨機(jī)森林D.自回歸移動(dòng)平均模型(ARMA)15、在使用支持向量機(jī)(SVM)進(jìn)行分類時(shí),核函數(shù)的選擇對(duì)模型性能有重要影響。假設(shè)我們要對(duì)非線性可分的數(shù)據(jù)進(jìn)行分類。以下關(guān)于核函數(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.線性核函數(shù)適用于數(shù)據(jù)本身接近線性可分的情況B.多項(xiàng)式核函數(shù)可以擬合復(fù)雜的非線性關(guān)系,但計(jì)算復(fù)雜度較高C.高斯核函數(shù)(RBF核)對(duì)數(shù)據(jù)的分布不敏感,適用于大多數(shù)情況D.選擇核函數(shù)時(shí),只需要考慮模型的復(fù)雜度,不需要考慮數(shù)據(jù)的特點(diǎn)16、某研究需要對(duì)音頻信號(hào)進(jìn)行分類,例如區(qū)分不同的音樂風(fēng)格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時(shí)域特征C.時(shí)頻特征D.以上特征都常用17、無監(jiān)督學(xué)習(xí)算法主要包括聚類和降維等方法。以下關(guān)于無監(jiān)督學(xué)習(xí)算法的說法中,錯(cuò)誤的是:聚類算法將數(shù)據(jù)分成不同的組,而降維算法則將高維數(shù)據(jù)映射到低維空間。那么,下列關(guān)于無監(jiān)督學(xué)習(xí)算法的說法錯(cuò)誤的是()A.K均值聚類算法需要預(yù)先指定聚類的個(gè)數(shù)K,并且對(duì)初始值比較敏感B.層次聚類算法可以生成樹形結(jié)構(gòu)的聚類結(jié)果,便于直觀理解C.主成分分析是一種常用的降維算法,可以保留數(shù)據(jù)的主要特征D.無監(jiān)督學(xué)習(xí)算法不需要任何先驗(yàn)知識(shí),完全由數(shù)據(jù)本身驅(qū)動(dòng)18、在進(jìn)行圖像識(shí)別任務(wù)時(shí),需要對(duì)大量的圖像數(shù)據(jù)進(jìn)行特征提取。假設(shè)我們有一組包含各種動(dòng)物的圖像,要區(qū)分貓和狗。如果采用傳統(tǒng)的手工設(shè)計(jì)特征方法,可能會(huì)面臨諸多挑戰(zhàn),例如特征的選擇和設(shè)計(jì)需要豐富的專業(yè)知識(shí)和經(jīng)驗(yàn)。而使用深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠自動(dòng)從數(shù)據(jù)中學(xué)習(xí)特征。那么,以下關(guān)于CNN在圖像特征提取方面的描述,哪一項(xiàng)是正確的?()A.CNN只能提取圖像的低級(jí)特征,如邊緣和顏色B.CNN能夠同時(shí)提取圖像的低級(jí)和高級(jí)語義特征,具有強(qiáng)大的表達(dá)能力C.CNN提取的特征與圖像的內(nèi)容無關(guān),主要取決于網(wǎng)絡(luò)結(jié)構(gòu)D.CNN提取的特征是固定的,無法根據(jù)不同的圖像數(shù)據(jù)集進(jìn)行調(diào)整19、強(qiáng)化學(xué)習(xí)中的智能體通過與環(huán)境的交互來學(xué)習(xí)最優(yōu)策略。以下關(guān)于強(qiáng)化學(xué)習(xí)的說法中,錯(cuò)誤的是:強(qiáng)化學(xué)習(xí)的目標(biāo)是最大化累計(jì)獎(jiǎng)勵(lì)。智能體根據(jù)當(dāng)前狀態(tài)選擇動(dòng)作,環(huán)境根據(jù)動(dòng)作反饋新的狀態(tài)和獎(jiǎng)勵(lì)。那么,下列關(guān)于強(qiáng)化學(xué)習(xí)的說法錯(cuò)誤的是()A.Q學(xué)習(xí)是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法B.策略梯度算法是一種基于策略的強(qiáng)化學(xué)習(xí)算法C.強(qiáng)化學(xué)習(xí)算法只適用于離散動(dòng)作空間,對(duì)于連續(xù)動(dòng)作空間不適用D.強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制、游戲等領(lǐng)域20、過擬合是機(jī)器學(xué)習(xí)中常見的問題之一。以下關(guān)于過擬合的說法中,錯(cuò)誤的是:過擬合是指模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)很好,但在測(cè)試數(shù)據(jù)上表現(xiàn)不佳。過擬合的原因可能是模型過于復(fù)雜或者訓(xùn)練數(shù)據(jù)不足。那么,下列關(guān)于過擬合的說法錯(cuò)誤的是()A.增加訓(xùn)練數(shù)據(jù)可以緩解過擬合問題B.正則化是一種常用的防止過擬合的方法C.過擬合只在深度學(xué)習(xí)中出現(xiàn),傳統(tǒng)的機(jī)器學(xué)習(xí)算法不會(huì)出現(xiàn)過擬合問題D.可以通過交叉驗(yàn)證等方法來檢測(cè)過擬合二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)什么是模型壓縮?常見的模型壓縮技術(shù)有哪些?2、(本題5分)談?wù)勅绾问褂脵C(jī)器學(xué)習(xí)進(jìn)行輿情監(jiān)測(cè)。3、(本題5分)簡(jiǎn)述在智能農(nóng)業(yè)中,機(jī)器學(xué)習(xí)的作用。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)利用結(jié)構(gòu)生物學(xué)數(shù)據(jù)解析生物大分子的結(jié)構(gòu)。2、(本題5分)通過神經(jīng)網(wǎng)絡(luò)模型對(duì)腦電圖(EEG)數(shù)據(jù)進(jìn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園安全知識(shí)培訓(xùn)課件會(huì)
- 舞臺(tái)操作面試題及答案
- 木工基礎(chǔ)考試題及答案
- 勞動(dòng)法試題庫及答案
- 中國煙草模擬面試題及答案
- 校園伴舞基礎(chǔ)知識(shí)培訓(xùn)課件
- 2025年桂林市第十三中學(xué)教師招聘考試筆試試題(含答案)
- 2025年甘肅社區(qū)工作者村文書招聘考試筆試試題(含答案)
- 2025年大連中山區(qū)招聘社區(qū)工作者考試筆試試題(含答案)
- 2025中級(jí)經(jīng)濟(jì)師《經(jīng)濟(jì)基礎(chǔ)》試題庫(參考答案)
- 巖土工程勘察服務(wù)投標(biāo)方案(技術(shù)方案)
- 單向板肋梁樓蓋設(shè)計(jì)計(jì)算書
- 吉林大學(xué) 人工智能原理 下
- 身份證地區(qū)對(duì)應(yīng)碼表
- 洗車場(chǎng)專項(xiàng)施工方案
- 中藥飲片采購配送服務(wù)投標(biāo)方案
- 風(fēng)光電站網(wǎng)絡(luò)信息系統(tǒng)安全事故應(yīng)急演練方案
- 五大神電力華煤炭公司勞動(dòng)定員統(tǒng)一標(biāo)準(zhǔn)
- WB/T 1036-2006菱鎂制品用玻璃纖維布
- 【詞匯】高中英語新教材詞匯總表(共七冊(cè))
- 北京市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細(xì)
評(píng)論
0/150
提交評(píng)論