南京藝術(shù)學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用實(shí)訓(xùn)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁(yè)
南京藝術(shù)學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用實(shí)訓(xùn)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁(yè)
南京藝術(shù)學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用實(shí)訓(xùn)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁(yè)
南京藝術(shù)學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用實(shí)訓(xùn)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁(yè)
南京藝術(shù)學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用實(shí)訓(xùn)》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共2頁(yè)南京藝術(shù)學(xué)院《數(shù)據(jù)庫(kù)原理及應(yīng)用實(shí)訓(xùn)》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析項(xiàng)目中,數(shù)據(jù)隱私和安全是重要的考慮因素。假設(shè)要處理包含個(gè)人敏感信息的數(shù)據(jù),以下關(guān)于數(shù)據(jù)隱私保護(hù)的描述,正確的是:()A.不采取任何措施保護(hù)數(shù)據(jù)隱私,直接進(jìn)行分析B.簡(jiǎn)單地對(duì)敏感數(shù)據(jù)進(jìn)行加密,不考慮加密算法的強(qiáng)度和安全性C.制定完善的數(shù)據(jù)隱私保護(hù)策略,采用合適的加密技術(shù)、訪問(wèn)控制和數(shù)據(jù)匿名化方法,確保數(shù)據(jù)在收集、存儲(chǔ)、處理和傳輸過(guò)程中的安全性和合規(guī)性D.認(rèn)為只要數(shù)據(jù)不泄露,就不需要關(guān)注數(shù)據(jù)的使用目的和用戶授權(quán)2、在對(duì)一個(gè)社交網(wǎng)絡(luò)的用戶關(guān)系數(shù)據(jù)進(jìn)行分析,例如好友關(guān)系、群組活動(dòng)等,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)和關(guān)鍵節(jié)點(diǎn)。以下哪種算法可能在社區(qū)發(fā)現(xiàn)和關(guān)鍵人物識(shí)別中表現(xiàn)出色?()A.PageRank算法B.K-Means算法C.Apriori算法D.以上都不是3、在數(shù)據(jù)分析中,模型的過(guò)擬合和欠擬合是常見(jiàn)的問(wèn)題。假設(shè)要訓(xùn)練一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,以下關(guān)于防止過(guò)擬合和欠擬合的方法描述,正確的是:()A.不進(jìn)行數(shù)據(jù)劃分和交叉驗(yàn)證,直接在整個(gè)數(shù)據(jù)集上訓(xùn)練模型B.增加模型的復(fù)雜度,不考慮數(shù)據(jù)的特點(diǎn)和規(guī)律C.采用正則化技術(shù)、增加數(shù)據(jù)量、進(jìn)行特征選擇、使用合適的模型架構(gòu)和超參數(shù)調(diào)整等方法,平衡模型的復(fù)雜度和擬合能力,避免過(guò)擬合和欠擬合D.認(rèn)為模型的性能只取決于數(shù)據(jù),不關(guān)注模型的調(diào)整和優(yōu)化4、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布和趨勢(shì),以下哪種組合的圖表較為合適?()A.直方圖和折線圖B.箱線圖和散點(diǎn)圖C.餅圖和柱狀圖D.雷達(dá)圖和樹(shù)形圖5、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行分組統(tǒng)計(jì),以下哪個(gè)函數(shù)在Python中經(jīng)常被使用?()A.groupby()B.merge()C.concat()D.pivot_table()6、數(shù)據(jù)分析中的生存分析用于研究事件發(fā)生的時(shí)間。假設(shè)我們要研究患者的生存時(shí)間。以下關(guān)于生存分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以計(jì)算生存率、中位生存時(shí)間等指標(biāo)B.Cox比例風(fēng)險(xiǎn)模型常用于生存分析中的風(fēng)險(xiǎn)因素評(píng)估C.生存分析只適用于醫(yī)學(xué)領(lǐng)域,在其他領(lǐng)域沒(méi)有應(yīng)用D.可以考慮協(xié)變量對(duì)生存時(shí)間的影響7、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的目的是為了更好地傳達(dá)數(shù)據(jù)的信息。以下關(guān)于數(shù)據(jù)可視化目的的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和趨勢(shì)C.數(shù)據(jù)可視化可以提高數(shù)據(jù)的準(zhǔn)確性和可靠性D.數(shù)據(jù)可視化可以增強(qiáng)數(shù)據(jù)的說(shuō)服力和影響力8、在數(shù)據(jù)挖掘中,以下哪種算法常用于對(duì)客戶進(jìn)行分類,以實(shí)現(xiàn)精準(zhǔn)營(yíng)銷?()A.決策樹(shù)算法B.關(guān)聯(lián)規(guī)則算法C.神經(jīng)網(wǎng)絡(luò)算法D.遺傳算法9、數(shù)據(jù)分析在金融領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一家銀行要評(píng)估客戶的信用風(fēng)險(xiǎn)。以下關(guān)于數(shù)據(jù)分析在金融中的描述,哪一項(xiàng)是不正確的?()A.可以建立信用評(píng)分模型,預(yù)測(cè)客戶違約的可能性B.分析市場(chǎng)趨勢(shì),制定投資策略C.數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用完全沒(méi)有風(fēng)險(xiǎn),不會(huì)導(dǎo)致錯(cuò)誤的決策D.監(jiān)測(cè)金融交易,防范欺詐行為10、對(duì)于一個(gè)包含多個(gè)變量的數(shù)據(jù)集,想要了解變量之間的線性關(guān)系強(qiáng)度,可以計(jì)算?()A.方差B.協(xié)方差C.相關(guān)系數(shù)D.偏度11、數(shù)據(jù)分析中的特征工程用于創(chuàng)建和選擇對(duì)模型有用的特征。假設(shè)我們要對(duì)一組圖像數(shù)據(jù)進(jìn)行分析。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)提取圖像的顏色、形狀、紋理等特征來(lái)表示圖像B.特征選擇可以去除冗余和無(wú)關(guān)的特征,提高模型的效率和性能C.特征工程只適用于結(jié)構(gòu)化數(shù)據(jù),對(duì)圖像、音頻等非結(jié)構(gòu)化數(shù)據(jù)不適用D.可以使用特征縮放、編碼等方法對(duì)特征進(jìn)行預(yù)處理12、數(shù)據(jù)分析中的回歸分析常用于預(yù)測(cè)和建模。假設(shè)要建立一個(gè)模型來(lái)預(yù)測(cè)房屋價(jià)格,考慮房屋面積、地理位置、房齡等因素。以下哪種回歸分析方法在處理這種多因素預(yù)測(cè)問(wèn)題時(shí)表現(xiàn)更為出色?()A.線性回歸B.邏輯回歸C.多項(xiàng)式回歸D.嶺回歸13、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的工具和技術(shù)有很多,其中Python是一種常用的編程語(yǔ)言。以下關(guān)于Python在數(shù)據(jù)可視化中的作用,錯(cuò)誤的是?()A.Python可以使用各種數(shù)據(jù)可視化庫(kù),如Matplotlib、Seaborn等,進(jìn)行數(shù)據(jù)可視化B.Python可以進(jìn)行數(shù)據(jù)的處理和分析,為數(shù)據(jù)可視化提供數(shù)據(jù)支持C.Python的數(shù)據(jù)可視化功能強(qiáng)大,可以制作各種復(fù)雜的圖表和圖形D.Python只適用于專業(yè)的數(shù)據(jù)分析師,對(duì)于非專業(yè)用戶來(lái)說(shuō)難以掌握14、數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)數(shù)據(jù)中項(xiàng)之間的關(guān)聯(lián)關(guān)系。假設(shè)我們要分析超市購(gòu)物籃數(shù)據(jù)。以下關(guān)于關(guān)聯(lián)規(guī)則挖掘的描述,哪一項(xiàng)是錯(cuò)誤的?()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率B.置信度表示在包含前提項(xiàng)集的情況下,包含結(jié)果項(xiàng)集的概率C.提升度大于1表示關(guān)聯(lián)規(guī)則是有效的,小于1表示是無(wú)效的D.關(guān)聯(lián)規(guī)則挖掘只能發(fā)現(xiàn)簡(jiǎn)單的兩兩關(guān)聯(lián)關(guān)系,不能處理復(fù)雜的關(guān)聯(lián)模式15、在進(jìn)行數(shù)據(jù)分析時(shí),特征工程對(duì)于模型的性能有著重要影響。假設(shè)你正在處理一個(gè)預(yù)測(cè)房?jī)r(jià)的數(shù)據(jù)集,包含房屋面積、房間數(shù)量、地理位置等特征。以下關(guān)于特征工程的操作,哪一項(xiàng)是最需要謹(jǐn)慎處理的?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,使其具有相同的量綱B.將地理位置轉(zhuǎn)換為經(jīng)緯度數(shù)值,并作為新的特征C.基于現(xiàn)有特征創(chuàng)建新的交互特征,如房屋面積與房間數(shù)量的乘積D.隨意刪除一些看起來(lái)不重要的特征,以簡(jiǎn)化模型16、在數(shù)據(jù)分析中,描述性統(tǒng)計(jì)是常用的方法之一。以下關(guān)于描述性統(tǒng)計(jì)指標(biāo)的說(shuō)法中,錯(cuò)誤的是?()A.均值是一組數(shù)據(jù)的平均值,能反映數(shù)據(jù)的集中趨勢(shì)B.中位數(shù)是將數(shù)據(jù)從小到大排序后位于中間位置的數(shù)值,不受極端值影響C.標(biāo)準(zhǔn)差反映了數(shù)據(jù)的離散程度,標(biāo)準(zhǔn)差越大,數(shù)據(jù)的波動(dòng)越小D.描述性統(tǒng)計(jì)指標(biāo)可以幫助我們快速了解數(shù)據(jù)的基本特征和分布情況17、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)經(jīng)驗(yàn)進(jìn)行手動(dòng)修正,無(wú)需考慮數(shù)據(jù)的分布和規(guī)律C.使用均值或中位數(shù)來(lái)填充缺失值,不考慮數(shù)據(jù)的特征和潛在影響D.采用合適的算法和工具,識(shí)別并處理重復(fù)記錄、缺失值和錯(cuò)誤數(shù)據(jù),同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)需求18、在數(shù)據(jù)清洗過(guò)程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對(duì)異常值進(jìn)行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再?zèng)Q定處理方式19、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),以制定營(yíng)銷策略。以下關(guān)于數(shù)據(jù)分析目的和方法的描述,正確的是:()A.主要目的是找出銷售額最高的產(chǎn)品,通過(guò)簡(jiǎn)單排序就能實(shí)現(xiàn)B.為了預(yù)測(cè)未來(lái)銷售趨勢(shì),應(yīng)該使用時(shí)間序列分析方法C.分析客戶地域分布對(duì)銷售的影響時(shí),無(wú)需考慮其他因素D.要評(píng)估不同營(yíng)銷渠道的效果,只需比較銷售額的大小20、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)要展示一個(gè)公司在過(guò)去十年中不同產(chǎn)品的銷售額變化趨勢(shì),同時(shí)要對(duì)比不同地區(qū)的銷售情況。以下哪種數(shù)據(jù)可視化方式最能清晰地呈現(xiàn)這些信息,便于分析和決策?()A.折線圖B.柱狀圖C.餅圖D.箱線圖21、在數(shù)據(jù)分析中,數(shù)據(jù)安全的措施有很多,其中訪問(wèn)控制是一種重要的措施。以下關(guān)于訪問(wèn)控制的描述中,錯(cuò)誤的是?()A.訪問(wèn)控制可以限制用戶對(duì)數(shù)據(jù)的訪問(wèn)權(quán)限B.訪問(wèn)控制可以防止數(shù)據(jù)的泄露和篡改C.訪問(wèn)控制可以分為身份認(rèn)證和授權(quán)兩個(gè)環(huán)節(jié)D.訪問(wèn)控制只適用于企業(yè)內(nèi)部的數(shù)據(jù)管理,對(duì)于外部數(shù)據(jù)無(wú)法進(jìn)行控制22、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)用于存儲(chǔ)和管理大量的數(shù)據(jù)。假設(shè)一個(gè)企業(yè)要建立數(shù)據(jù)倉(cāng)庫(kù)。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)通常是經(jīng)過(guò)整合和清洗的,質(zhì)量較高B.數(shù)據(jù)倉(cāng)庫(kù)支持復(fù)雜的查詢和分析操作,能夠快速返回結(jié)果C.數(shù)據(jù)倉(cāng)庫(kù)的數(shù)據(jù)更新頻率較低,一般是定期批量更新D.數(shù)據(jù)倉(cāng)庫(kù)可以直接替代業(yè)務(wù)系統(tǒng)中的數(shù)據(jù)庫(kù),用于日常的事務(wù)處理23、在處理時(shí)間序列數(shù)據(jù)時(shí),例如股票價(jià)格的歷史數(shù)據(jù)。假設(shè)要預(yù)測(cè)未來(lái)一段時(shí)間的股票價(jià)格,以下哪種方法可能會(huì)受到數(shù)據(jù)季節(jié)性波動(dòng)的較大影響?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.隨機(jī)森林模型24、在選擇數(shù)據(jù)分析工具時(shí),需要考慮多種因素。假設(shè)要為一個(gè)小型團(tuán)隊(duì)選擇合適的數(shù)據(jù)分析工具,以下關(guān)于工具選擇的描述,正確的是:()A.只追求功能強(qiáng)大的高端工具,不考慮成本和團(tuán)隊(duì)的使用難度B.隨意選擇一個(gè)流行的工具,不考慮其與團(tuán)隊(duì)需求的匹配度C.評(píng)估團(tuán)隊(duì)的技術(shù)水平、數(shù)據(jù)規(guī)模、分析需求和預(yù)算等因素,選擇易于使用、功能滿足需求且性價(jià)比高的數(shù)據(jù)分析工具,如Excel、Python、R等D.認(rèn)為一旦選擇了一個(gè)工具,就不能更換,不考慮工具的更新和發(fā)展25、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,以下哪種方法較為常見(jiàn)?()A.Z-score標(biāo)準(zhǔn)化B.Min-Max標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是26、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),發(fā)現(xiàn)某個(gè)月的銷售額異常高。在進(jìn)一步分析時(shí),首先應(yīng)該考慮的因素是?()A.促銷活動(dòng)B.數(shù)據(jù)錄入錯(cuò)誤C.市場(chǎng)需求突然增加D.競(jìng)爭(zhēng)對(duì)手表現(xiàn)不佳27、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是一種常用的統(tǒng)計(jì)方法。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績(jī),以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.首先需要提出原假設(shè)和備擇假設(shè),然后根據(jù)樣本數(shù)據(jù)計(jì)算檢驗(yàn)統(tǒng)計(jì)量B.如果p值小于預(yù)先設(shè)定的顯著性水平,就拒絕原假設(shè),認(rèn)為新教學(xué)方法有效C.假設(shè)檢驗(yàn)的結(jié)果完全取決于樣本數(shù)據(jù)的大小和分布,與研究問(wèn)題的實(shí)際情況無(wú)關(guān)D.可以通過(guò)控制樣本量和顯著性水平來(lái)平衡檢驗(yàn)的靈敏度和特異性28、在進(jìn)行關(guān)聯(lián)分析時(shí),如果兩個(gè)商品的支持度很高,但置信度很低,說(shuō)明:()A.這兩個(gè)商品經(jīng)常被同時(shí)購(gòu)買,但這種關(guān)聯(lián)不是很可靠B.這兩個(gè)商品很少被同時(shí)購(gòu)買,但一旦同時(shí)購(gòu)買,關(guān)聯(lián)很強(qiáng)C.這種關(guān)聯(lián)是虛假的,沒(méi)有實(shí)際意義D.無(wú)法得出明確的結(jié)論29、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理包括數(shù)據(jù)標(biāo)準(zhǔn)化、歸一化等操作。假設(shè)要對(duì)不同量級(jí)的數(shù)據(jù)進(jìn)行處理,以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.標(biāo)準(zhǔn)化可以將數(shù)據(jù)轉(zhuǎn)換為均值為0,標(biāo)準(zhǔn)差為1的分布,使得不同特征具有可比性B.歸一化可以將數(shù)據(jù)映射到特定的區(qū)間,如[0,1],但可能會(huì)改變數(shù)據(jù)的分布C.數(shù)據(jù)預(yù)處理對(duì)后續(xù)的分析和建模影響不大,可以根據(jù)個(gè)人喜好選擇是否進(jìn)行D.對(duì)于數(shù)值型數(shù)據(jù)和分類型數(shù)據(jù),需要采用不同的數(shù)據(jù)預(yù)處理方法30、數(shù)據(jù)分析中的數(shù)據(jù)探索不僅包括數(shù)值型數(shù)據(jù),也包括類別型數(shù)據(jù)。假設(shè)要分析一個(gè)包含職業(yè)信息的類別型數(shù)據(jù)集,以下哪種方法可能有助于了解不同職業(yè)的分布情況?()A.計(jì)算每個(gè)職業(yè)的頻數(shù)B.繪制職業(yè)的直方圖C.進(jìn)行職業(yè)的聚類分析D.以上方法都可以二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在金融信貸領(lǐng)域,如何通過(guò)數(shù)據(jù)分析建立信用評(píng)分模型,評(píng)估借款人的信用風(fēng)險(xiǎn),降低不良貸款率。2、(本題5分)制造業(yè)中的供應(yīng)鏈環(huán)節(jié)積累了大量的供應(yīng)商數(shù)據(jù)、采購(gòu)數(shù)據(jù)和物流數(shù)據(jù)。論述如何通過(guò)數(shù)據(jù)分析技術(shù),像供應(yīng)鏈風(fēng)險(xiǎn)評(píng)估、成本優(yōu)化分析等,增強(qiáng)供應(yīng)鏈的彈性和效率,同時(shí)思考在數(shù)據(jù)共享意愿低、供應(yīng)鏈復(fù)雜性和突發(fā)事件應(yīng)對(duì)方面的挑戰(zhàn)及應(yīng)對(duì)措施。3、(本題5分)在零售行業(yè),客戶忠誠(chéng)度計(jì)劃產(chǎn)生了大量的數(shù)據(jù)。討論如何運(yùn)用數(shù)據(jù)分析來(lái)評(píng)估客戶忠誠(chéng)度計(jì)劃的效果,識(shí)別高價(jià)值客戶,制定針對(duì)性的營(yíng)銷策略,以提高客戶留存率和消費(fèi)頻率。4、(本題5分)在公共服務(wù)領(lǐng)域,如教育、醫(yī)療和社保等,積累了大量的公民服務(wù)數(shù)據(jù)。分析如何借助數(shù)據(jù)分析手段,如資源分配優(yōu)化、服務(wù)質(zhì)量評(píng)估等,提高公共服務(wù)的公平性和效率,同時(shí)探討在數(shù)據(jù)安全性要求高、政策導(dǎo)向影響和公眾參與度方面可能面臨的問(wèn)題及應(yīng)對(duì)方法。5、(本題5分)農(nóng)業(yè)領(lǐng)域的數(shù)據(jù)分析對(duì)于提高農(nóng)作物產(chǎn)量、優(yōu)化資源利用和應(yīng)對(duì)氣候變化具有重要意義。請(qǐng)論述如何運(yùn)用數(shù)據(jù)分析來(lái)監(jiān)測(cè)土壤狀況、預(yù)測(cè)氣象災(zāi)害和優(yōu)化農(nóng)業(yè)生產(chǎn)決策,分析農(nóng)業(yè)數(shù)據(jù)的特點(diǎn)和采集難點(diǎn),以及如何推動(dòng)農(nóng)業(yè)數(shù)據(jù)分析的普及和應(yīng)用。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行模型的部署和上線,包括模型的轉(zhuǎn)換、優(yōu)化和監(jiān)控等關(guān)鍵步驟。2、(本題5分)簡(jiǎn)述數(shù)據(jù)分析師在項(xiàng)目中的風(fēng)險(xiǎn)管理,包括識(shí)別風(fēng)險(xiǎn)、評(píng)估風(fēng)險(xiǎn)影響、制定應(yīng)對(duì)策略等,并舉例說(shuō)明可能的風(fēng)險(xiǎn)和應(yīng)對(duì)方法。3、(本題5分)解釋數(shù)據(jù)可視化中的數(shù)據(jù)鉆取和上卷,說(shuō)明如何通過(guò)這兩種操作深入探索和概括數(shù)據(jù),以獲取更詳細(xì)或更宏觀的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論