漯河醫(yī)學(xué)高等專科學(xué)?!稊?shù)字展示》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁(yè)
漯河醫(yī)學(xué)高等專科學(xué)?!稊?shù)字展示》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁(yè)
漯河醫(yī)學(xué)高等??茖W(xué)校《數(shù)字展示》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁(yè)
漯河醫(yī)學(xué)高等??茖W(xué)?!稊?shù)字展示》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁(yè)
漯河醫(yī)學(xué)高等??茖W(xué)?!稊?shù)字展示》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共2頁(yè)漯河醫(yī)學(xué)高等??茖W(xué)校《數(shù)字展示》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺(jué)中的圖像風(fēng)格遷移是一項(xiàng)有趣的任務(wù)。假設(shè)要將一幅油畫(huà)的風(fēng)格應(yīng)用到一張照片上,以下關(guān)于模型訓(xùn)練的要點(diǎn),哪一項(xiàng)是不正確的?()A.學(xué)習(xí)油畫(huà)和照片的特征表示,找到風(fēng)格和內(nèi)容的分離方式B.只關(guān)注風(fēng)格的遷移,不考慮照片原始內(nèi)容的保留C.采用對(duì)抗訓(xùn)練,使生成的圖像在風(fēng)格和內(nèi)容上達(dá)到平衡D.調(diào)整模型參數(shù),控制風(fēng)格遷移的強(qiáng)度和效果2、計(jì)算機(jī)視覺(jué)在無(wú)人駕駛飛行器(UAV)中的應(yīng)用可以輔助飛行和導(dǎo)航。假設(shè)一架UAV需要依靠視覺(jué)信息避開(kāi)障礙物,以下關(guān)于UAV計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.僅依靠單目視覺(jué)就能準(zhǔn)確估計(jì)障礙物的距離和速度B.視覺(jué)信息在UAV飛行中的作用有限,主要依靠其他傳感器如GPSC.多目視覺(jué)和深度學(xué)習(xí)算法的結(jié)合可以為UAV提供更準(zhǔn)確的環(huán)境感知和障礙物避讓能力D.UAV的飛行速度和姿態(tài)對(duì)視覺(jué)系統(tǒng)的性能沒(méi)有影響3、計(jì)算機(jī)視覺(jué)在智能零售中的應(yīng)用可以改善購(gòu)物體驗(yàn)和提高運(yùn)營(yíng)效率。假設(shè)一個(gè)超市需要通過(guò)計(jì)算機(jī)視覺(jué)實(shí)現(xiàn)自動(dòng)結(jié)賬和庫(kù)存管理。以下關(guān)于計(jì)算機(jī)視覺(jué)在智能零售中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)商品識(shí)別技術(shù)自動(dòng)識(shí)別顧客購(gòu)買(mǎi)的商品,實(shí)現(xiàn)快速結(jié)賬B.能夠?qū)崟r(shí)監(jiān)測(cè)貨架上商品的庫(kù)存水平,及時(shí)提醒補(bǔ)貨C.計(jì)算機(jī)視覺(jué)系統(tǒng)能夠準(zhǔn)確識(shí)別所有商品的包裝和標(biāo)簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營(yíng)銷(xiāo)策略提供數(shù)據(jù)支持4、在計(jì)算機(jī)視覺(jué)的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對(duì)模型的訓(xùn)練和性能評(píng)估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準(zhǔn)確的是()A.大規(guī)模、多樣化和標(biāo)注準(zhǔn)確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強(qiáng)的模型B.一些公開(kāi)的數(shù)據(jù)集如ImageNet、COCO等為計(jì)算機(jī)視覺(jué)研究提供了重要的基準(zhǔn)C.數(shù)據(jù)集的構(gòu)建需要耗費(fèi)大量的時(shí)間和人力,但可以通過(guò)數(shù)據(jù)增強(qiáng)技術(shù)來(lái)減少對(duì)原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進(jìn)行更新和擴(kuò)展,能夠一直滿足研究的需求5、計(jì)算機(jī)視覺(jué)中的目標(biāo)重識(shí)別任務(wù)旨在在不同的攝像頭視角中識(shí)別出同一目標(biāo)。假設(shè)要在一個(gè)大型商場(chǎng)的多個(gè)攝像頭中尋找一個(gè)特定的人物。以下關(guān)于目標(biāo)重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)提取目標(biāo)的特征,如顏色、形狀和紋理,來(lái)進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的特征學(xué)習(xí)方法能夠提高目標(biāo)重識(shí)別的準(zhǔn)確率C.目標(biāo)重識(shí)別不受攝像頭視角、光照和人物姿態(tài)變化的影響D.可以通過(guò)建立目標(biāo)的特征庫(kù),快速在多個(gè)攝像頭中進(jìn)行匹配和搜索6、計(jì)算機(jī)視覺(jué)中的圖像去噪旨在去除圖像中的噪聲,恢復(fù)清晰的圖像。假設(shè)要處理一張受到嚴(yán)重噪聲污染的天文圖像,以下關(guān)于去噪算法的選擇,哪一項(xiàng)是需要謹(jǐn)慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學(xué)習(xí)的去噪算法,如自編碼器C.只考慮去噪效果,不關(guān)心圖像細(xì)節(jié)的保留D.根據(jù)噪聲的類型和強(qiáng)度選擇合適的去噪算法7、在計(jì)算機(jī)視覺(jué)的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在視頻中被短暫遮擋。以下關(guān)于處理遮擋情況的方法,哪一項(xiàng)是不太有效的?()A.利用目標(biāo)在遮擋前的運(yùn)動(dòng)軌跡預(yù)測(cè)其位置B.完全放棄對(duì)被遮擋目標(biāo)的跟蹤,等待其重新出現(xiàn)C.結(jié)合目標(biāo)的外觀特征和運(yùn)動(dòng)信息進(jìn)行跟蹤D.借助周?chē)尘昂推渌嚓P(guān)物體的信息輔助跟蹤8、當(dāng)利用計(jì)算機(jī)視覺(jué)進(jìn)行圖像語(yǔ)義分割任務(wù),例如將圖像中的不同物體分割出來(lái),以下哪種深度學(xué)習(xí)架構(gòu)可能在分割精度和效率方面表現(xiàn)較好?()A.FCNB.U-NetC.SegNetD.以上都是9、計(jì)算機(jī)視覺(jué)中的眼底圖像分析對(duì)于眼科疾病的診斷具有重要意義。以下關(guān)于眼底圖像分析的描述,不準(zhǔn)確的是()A.可以檢測(cè)眼底的病變、血管異常和視網(wǎng)膜結(jié)構(gòu)的改變B.深度學(xué)習(xí)方法在眼底圖像分析中能夠自動(dòng)提取特征和進(jìn)行疾病分類C.眼底圖像分析需要高質(zhì)量的圖像數(shù)據(jù)和專業(yè)的醫(yī)學(xué)知識(shí)標(biāo)注D.眼底圖像分析技術(shù)已經(jīng)非常成熟,能夠替代醫(yī)生的診斷10、計(jì)算機(jī)視覺(jué)中,以下哪種技術(shù)常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是11、在計(jì)算機(jī)視覺(jué)的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對(duì)一組包含不同視角和縮放比例的物體圖像進(jìn)行匹配,SIFT特征的哪個(gè)特性使其在這種情況下表現(xiàn)出色?()A.對(duì)旋轉(zhuǎn)和尺度變化具有不變性B.計(jì)算速度快,效率高C.特征維度低,易于存儲(chǔ)和處理D.對(duì)光照變化不敏感12、在計(jì)算機(jī)視覺(jué)的應(yīng)用中,人臉識(shí)別是一個(gè)常見(jiàn)的任務(wù)。假設(shè)一個(gè)公司要建立一個(gè)門(mén)禁系統(tǒng),通過(guò)人臉識(shí)別來(lái)允許員工進(jìn)入。為了提高人臉識(shí)別的準(zhǔn)確性和魯棒性,以下哪種技術(shù)通常會(huì)被采用?()A.基于幾何特征的人臉識(shí)別B.基于模板匹配的人臉識(shí)別C.基于深度學(xué)習(xí)的人臉識(shí)別,結(jié)合多模態(tài)數(shù)據(jù)D.基于顏色特征的人臉識(shí)別13、在計(jì)算機(jī)視覺(jué)的表情識(shí)別任務(wù)中,判斷圖像或視頻中人物的表情。假設(shè)要開(kāi)發(fā)一個(gè)用于在線教育的表情識(shí)別系統(tǒng),以下關(guān)于表情識(shí)別方法的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分析面部肌肉的運(yùn)動(dòng)和特征點(diǎn)的變化來(lái)識(shí)別表情B.深度學(xué)習(xí)模型能夠?qū)W習(xí)不同表情的模式和特征,實(shí)現(xiàn)準(zhǔn)確的表情分類C.表情識(shí)別系統(tǒng)需要考慮光照、頭部姿態(tài)和遮擋等因素的影響D.表情識(shí)別可以準(zhǔn)確地識(shí)別出所有細(xì)微和復(fù)雜的表情,不受個(gè)體差異和文化背景的影響14、計(jì)算機(jī)視覺(jué)中的光流計(jì)算用于估計(jì)圖像中像素的運(yùn)動(dòng)。假設(shè)要分析一段視頻中物體的運(yùn)動(dòng)速度和方向。以下關(guān)于光流計(jì)算的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)比較連續(xù)幀之間的像素差異來(lái)計(jì)算光流B.光流計(jì)算能夠?yàn)橐曨l中的目標(biāo)跟蹤和行為分析提供重要信息C.無(wú)論視頻的幀率和分辨率如何,光流計(jì)算都能準(zhǔn)確地估計(jì)像素運(yùn)動(dòng)D.深度學(xué)習(xí)方法也被應(yīng)用于光流計(jì)算,提高了計(jì)算的準(zhǔn)確性和效率15、當(dāng)進(jìn)行圖像的去霧處理時(shí),假設(shè)要去除圖像中由于霧氣導(dǎo)致的模糊和低對(duì)比度。以下哪種方法可能更有效?()A.基于物理模型的去霧方法,估計(jì)大氣光和透射率B.對(duì)圖像進(jìn)行簡(jiǎn)單的對(duì)比度增強(qiáng)C.不進(jìn)行去霧處理,保留有霧的效果D.隨機(jī)調(diào)整圖像的亮度和飽和度16、計(jì)算機(jī)視覺(jué)中的場(chǎng)景理解是理解圖像或視頻中的場(chǎng)景內(nèi)容和語(yǔ)義信息。假設(shè)要理解一張城市街道的圖像,以下關(guān)于場(chǎng)景理解方法的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)對(duì)象檢測(cè)、語(yǔ)義分割和場(chǎng)景分類等任務(wù)來(lái)實(shí)現(xiàn)場(chǎng)景理解B.結(jié)合上下文信息和先驗(yàn)知識(shí)能夠提高場(chǎng)景理解的準(zhǔn)確性C.深度學(xué)習(xí)模型能夠?qū)W習(xí)場(chǎng)景中的全局特征和關(guān)系,實(shí)現(xiàn)對(duì)場(chǎng)景的深入理解D.場(chǎng)景理解可以在沒(méi)有任何先驗(yàn)知識(shí)和上下文信息的情況下,準(zhǔn)確地推斷出場(chǎng)景的語(yǔ)義17、目標(biāo)檢測(cè)是計(jì)算機(jī)視覺(jué)中的重要任務(wù)之一,旨在定位和識(shí)別圖像中的多個(gè)目標(biāo)。假設(shè)我們要在城市街道的圖像中檢測(cè)行人和車(chē)輛。對(duì)于處理這種復(fù)雜場(chǎng)景的目標(biāo)檢測(cè)任務(wù),以下哪種技術(shù)通常能提供更準(zhǔn)確的檢測(cè)結(jié)果?()A.基于滑動(dòng)窗口的傳統(tǒng)目標(biāo)檢測(cè)方法B.基于區(qū)域提議的目標(biāo)檢測(cè)算法,如R-CNN系列C.基于回歸的一階段目標(biāo)檢測(cè)算法,如YOLO系列D.基于聚類的目標(biāo)檢測(cè)方法18、在計(jì)算機(jī)視覺(jué)的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲,同時(shí)盡可能保留圖像的細(xì)節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進(jìn)行任何去噪處理,保留原始噪聲圖像19、在計(jì)算機(jī)視覺(jué)的圖像檢索任務(wù)中,假設(shè)要從一個(gè)大型圖像數(shù)據(jù)庫(kù)中快速找到與給定圖像相似的圖像。以下關(guān)于圖像檢索方法的描述,正確的是:()A.基于文本標(biāo)注的圖像檢索方法依賴于人工標(biāo)注的準(zhǔn)確性和完整性,檢索效果不穩(wěn)定B.基于內(nèi)容的圖像檢索通過(guò)提取圖像的特征進(jìn)行相似性比較,但特征的選擇對(duì)檢索結(jié)果影響不大C.哈希方法能夠?qū)⒏呔S的圖像特征映射為低維的哈希碼,大大提高檢索效率,但會(huì)損失一定的準(zhǔn)確性D.所有的圖像檢索方法都能夠在大規(guī)模數(shù)據(jù)庫(kù)中實(shí)現(xiàn)實(shí)時(shí)、準(zhǔn)確的檢索20、在計(jì)算機(jī)視覺(jué)的視覺(jué)跟蹤任務(wù)中,目標(biāo)在運(yùn)動(dòng)過(guò)程中可能會(huì)發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準(zhǔn)確性,以下哪種策略可能是有效的?()A.模型更新機(jī)制B.多特征融合C.抗遮擋處理D.以上都是21、當(dāng)利用計(jì)算機(jī)視覺(jué)技術(shù)對(duì)醫(yī)學(xué)影像(如X光、CT等)進(jìn)行分析,輔助醫(yī)生進(jìn)行疾病診斷時(shí),需要從大量的圖像數(shù)據(jù)中提取有價(jià)值的特征。以下哪種特征提取方法在醫(yī)學(xué)影像分析中可能具有較高的應(yīng)用價(jià)值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)D.基于顏色的特征提取22、計(jì)算機(jī)視覺(jué)中的工業(yè)檢測(cè)任務(wù)需要檢測(cè)產(chǎn)品的缺陷和瑕疵。假設(shè)要在生產(chǎn)線上對(duì)一批電子產(chǎn)品的外觀進(jìn)行檢測(cè),要求快速準(zhǔn)確地發(fā)現(xiàn)微小的缺陷。以下哪種工業(yè)檢測(cè)方法在處理這種高精度要求的任務(wù)時(shí)最為適用?()A.機(jī)器視覺(jué)檢測(cè)B.人工目檢C.抽樣檢測(cè)D.基于統(tǒng)計(jì)的檢測(cè)23、計(jì)算機(jī)視覺(jué)中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)我們要分析一個(gè)視頻中物體的運(yùn)動(dòng)速度和方向,以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下能夠提供更準(zhǔn)確的結(jié)果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法24、計(jì)算機(jī)視覺(jué)在工業(yè)檢測(cè)中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)要檢測(cè)生產(chǎn)線上的零件是否存在缺陷,以下關(guān)于工業(yè)檢測(cè)中的計(jì)算機(jī)視覺(jué)應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以使用機(jī)器視覺(jué)系統(tǒng)對(duì)零件進(jìn)行實(shí)時(shí)檢測(cè),快速發(fā)現(xiàn)缺陷B.深度學(xué)習(xí)模型能夠自動(dòng)學(xué)習(xí)正常零件和缺陷零件的特征差異,實(shí)現(xiàn)準(zhǔn)確的缺陷檢測(cè)C.工業(yè)檢測(cè)中的計(jì)算機(jī)視覺(jué)系統(tǒng)需要具備高度的準(zhǔn)確性和穩(wěn)定性,能夠適應(yīng)不同的生產(chǎn)環(huán)境D.計(jì)算機(jī)視覺(jué)在工業(yè)檢測(cè)中只能檢測(cè)外觀缺陷,對(duì)于零件的內(nèi)部結(jié)構(gòu)和性能無(wú)法進(jìn)行評(píng)估25、計(jì)算機(jī)視覺(jué)中的人臉檢測(cè)和識(shí)別是熱門(mén)研究方向。假設(shè)要在一個(gè)大規(guī)模的人臉數(shù)據(jù)庫(kù)中進(jìn)行快速準(zhǔn)確的人臉識(shí)別,以下哪種特征提取方法可能更具優(yōu)勢(shì)?()A.基于幾何特征的方法B.基于局部二值模式(LBP)的方法C.基于深度學(xué)習(xí)的方法D.基于主成分分析(PCA)的方法26、對(duì)于圖像的紋理分析任務(wù),假設(shè)要描述和區(qū)分不同類型的紋理,例如木紋和石紋。以下哪種方法可能更有助于準(zhǔn)確分析紋理特征?()A.基于統(tǒng)計(jì)的方法,計(jì)算紋理的灰度共生矩陣B.基于模型的方法,如馬爾可夫隨機(jī)場(chǎng)C.僅通過(guò)肉眼觀察和主觀描述紋理D.不進(jìn)行任何紋理分析,直接忽略紋理信息27、在計(jì)算機(jī)視覺(jué)的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要處理一張被噪聲嚴(yán)重污染的天文圖像,以下關(guān)于圖像去噪方法的描述,哪一項(xiàng)是不正確的?()A.均值濾波和中值濾波等傳統(tǒng)方法可以在一定程度上去除噪聲,但可能會(huì)模糊圖像細(xì)節(jié)B.基于小波變換的方法能夠在去除噪聲的同時(shí)較好地保留圖像的邊緣和細(xì)節(jié)C.深度學(xué)習(xí)方法通過(guò)學(xué)習(xí)噪聲和干凈圖像之間的映射關(guān)系,實(shí)現(xiàn)有效的去噪D.圖像去噪可以完全恢復(fù)被噪聲破壞的原始圖像信息,沒(méi)有任何損失28、計(jì)算機(jī)視覺(jué)中的醫(yī)學(xué)圖像分析對(duì)于疾病的診斷和治療具有重要意義。以下關(guān)于醫(yī)學(xué)圖像分析的描述,不準(zhǔn)確的是()A.可以對(duì)X光、CT、MRI等醫(yī)學(xué)圖像進(jìn)行病灶檢測(cè)、器官分割和疾病分類B.深度學(xué)習(xí)技術(shù)在醫(yī)學(xué)圖像分析中取得了顯著的成果,但也面臨數(shù)據(jù)標(biāo)注困難和模型泛化能力不足的問(wèn)題C.醫(yī)學(xué)圖像分析需要遵循嚴(yán)格的醫(yī)學(xué)標(biāo)準(zhǔn)和倫理規(guī)范,確保結(jié)果的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像分析完全依賴于計(jì)算機(jī)視覺(jué)技術(shù),醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識(shí)不再重要29、在計(jì)算機(jī)視覺(jué)中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)我們要開(kāi)發(fā)一個(gè)能夠在交通場(chǎng)景中檢測(cè)車(chē)輛的系統(tǒng)。如果圖像中的車(chē)輛存在多種姿態(tài)、大小和光照條件的變化,以下哪種目標(biāo)檢測(cè)算法可能更適合應(yīng)對(duì)這種復(fù)雜情況?()A.基于傳統(tǒng)特征的檢測(cè)算法,如HOG特征結(jié)合SVM分類器B.基于深度學(xué)習(xí)的FasterR-CNN算法C.基于模板匹配的檢測(cè)算法D.基于顏色特征的檢測(cè)算法30、計(jì)算機(jī)視覺(jué)中,以下哪個(gè)任務(wù)通常需要對(duì)圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像生成B.目標(biāo)檢測(cè)C.圖像超分辨率D.圖像去噪二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)通過(guò)圖像分割技術(shù),將衛(wèi)星圖像中的沙漠和綠洲區(qū)域進(jìn)行劃分。2、(本題5分)基于深度學(xué)習(xí),實(shí)現(xiàn)對(duì)足球比賽中越位情況的檢測(cè)。3、(本題5分)在工業(yè)生產(chǎn)中,使用計(jì)算機(jī)視覺(jué)檢測(cè)電子元件的焊接質(zhì)量。4、(本題5分)利用圖像增強(qiáng)技術(shù),提升昏暗環(huán)境下拍攝圖像的亮度和對(duì)比度。5、(本題5分)利用目標(biāo)檢測(cè)算法,在地質(zhì)勘查圖像中檢測(cè)礦坑。三、簡(jiǎn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論