




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共2頁(yè)廣東南華工商職業(yè)學(xué)院《機(jī)器學(xué)習(xí)基礎(chǔ)實(shí)踐》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時(shí)實(shí)現(xiàn)模型的協(xié)同訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)擁有各自的私有數(shù)據(jù),需要共同訓(xùn)練一個(gè)模型。以下哪種聯(lián)邦學(xué)習(xí)算法或框架在處理數(shù)據(jù)異構(gòu)和通信效率方面表現(xiàn)更為優(yōu)秀?()A.橫向聯(lián)邦學(xué)習(xí)B.縱向聯(lián)邦學(xué)習(xí)C.聯(lián)邦遷移學(xué)習(xí)D.以上框架根據(jù)具體情況選擇2、深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類等任務(wù)中取得了顯著成果。假設(shè)要使用CNN對(duì)大量的動(dòng)物圖片進(jìn)行分類。以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項(xiàng)是不正確的?()A.卷積層通過(guò)卷積操作提取圖像的局部特征B.池化層用于減少特征圖的尺寸,降低計(jì)算量,同時(shí)保留主要特征C.隨著網(wǎng)絡(luò)層數(shù)的增加,CNN的性能一定會(huì)不斷提高D.可以通過(guò)調(diào)整卷積核的大小、數(shù)量和網(wǎng)絡(luò)結(jié)構(gòu)來(lái)優(yōu)化CNN的性能3、人工智能在金融風(fēng)險(xiǎn)預(yù)測(cè)中具有應(yīng)用潛力。假設(shè)要預(yù)測(cè)股票市場(chǎng)的波動(dòng),以下哪種數(shù)據(jù)來(lái)源可能對(duì)預(yù)測(cè)結(jié)果的準(zhǔn)確性提升幫助最?。浚ǎ〢.公司的財(cái)務(wù)報(bào)表B.社交媒體上的輿論C.歷史天氣數(shù)據(jù)D.宏觀經(jīng)濟(jì)指標(biāo)4、當(dāng)利用人工智能進(jìn)行金融風(fēng)險(xiǎn)評(píng)估,例如評(píng)估信用風(fēng)險(xiǎn)和市場(chǎng)風(fēng)險(xiǎn),以下哪種模型和特征可能是重要的組成部分?()A.邏輯回歸模型和財(cái)務(wù)指標(biāo)B.決策樹(shù)模型和交易數(shù)據(jù)C.深度學(xué)習(xí)模型和宏觀經(jīng)濟(jì)數(shù)據(jù)D.以上都是5、人工智能中的語(yǔ)音識(shí)別技術(shù)正在改變?nèi)藗兣c計(jì)算機(jī)的交互方式。假設(shè)要開(kāi)發(fā)一個(gè)能夠準(zhǔn)確識(shí)別不同口音和語(yǔ)速的語(yǔ)音識(shí)別系統(tǒng)。以下關(guān)于語(yǔ)音識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.特征提取是語(yǔ)音識(shí)別中的關(guān)鍵步驟,用于將語(yǔ)音信號(hào)轉(zhuǎn)換為可處理的特征向量B.聲學(xué)模型和語(yǔ)言模型共同作用,提高語(yǔ)音識(shí)別的準(zhǔn)確率C.語(yǔ)音識(shí)別系統(tǒng)對(duì)于背景噪音和多人同時(shí)說(shuō)話的場(chǎng)景能夠輕松應(yīng)對(duì),不受任何影響D.不斷增加訓(xùn)練數(shù)據(jù)的多樣性和規(guī)模,可以改善語(yǔ)音識(shí)別系統(tǒng)在復(fù)雜場(chǎng)景下的性能6、在人工智能的模型訓(xùn)練中,超參數(shù)的調(diào)整是一個(gè)關(guān)鍵步驟。假設(shè)正在訓(xùn)練一個(gè)用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項(xiàng)是不太可取的?()A.基于經(jīng)驗(yàn)和直覺(jué),隨機(jī)選擇一組超參數(shù)進(jìn)行試驗(yàn)B.使用網(wǎng)格搜索或隨機(jī)搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實(shí)踐中常用的超參數(shù)設(shè)置D.利用自動(dòng)超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗(yàn)證集的性能自動(dòng)尋找最優(yōu)超參數(shù)7、在人工智能的推薦系統(tǒng)中,例如為用戶推薦電影、音樂(lè)或商品,需要考慮用戶的歷史行為、偏好和當(dāng)前的情境信息。假設(shè)一個(gè)用戶的興趣偏好經(jīng)常變化,以下哪種方法能夠更好地適應(yīng)這種動(dòng)態(tài)的用戶偏好?()A.基于協(xié)同過(guò)濾的推薦,依賴其他用戶的行為B.基于內(nèi)容的推薦,分析物品的特征C.混合推薦,結(jié)合多種推薦方法D.始終使用固定的推薦策略,不進(jìn)行調(diào)整8、人工智能在金融領(lǐng)域的應(yīng)用包括風(fēng)險(xiǎn)評(píng)估、投資決策和欺詐檢測(cè)等。假設(shè)一個(gè)銀行正在使用人工智能進(jìn)行風(fēng)險(xiǎn)評(píng)估,以下關(guān)于金融領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.人工智能可以完全取代人類專家的判斷,獨(dú)立做出準(zhǔn)確的風(fēng)險(xiǎn)評(píng)估和投資決策B.數(shù)據(jù)的質(zhì)量和完整性對(duì)人工智能在金融領(lǐng)域的應(yīng)用效果沒(méi)有影響C.結(jié)合人工智能模型和人類專家的經(jīng)驗(yàn),可以更有效地進(jìn)行金融風(fēng)險(xiǎn)評(píng)估和管理D.人工智能在金融領(lǐng)域的應(yīng)用不存在任何風(fēng)險(xiǎn)和監(jiān)管挑戰(zhàn)9、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個(gè)深度學(xué)習(xí)模型時(shí),發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時(shí)避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用10、知識(shí)圖譜是一種用于表示知識(shí)和關(guān)系的結(jié)構(gòu)化數(shù)據(jù)模型。以下關(guān)于知識(shí)圖譜的說(shuō)法,不正確的是()A.知識(shí)圖譜可以整合來(lái)自不同來(lái)源的知識(shí),構(gòu)建一個(gè)全面的知識(shí)體系B.知識(shí)圖譜中的節(jié)點(diǎn)表示實(shí)體,邊表示實(shí)體之間的關(guān)系C.知識(shí)圖譜在智能搜索、推薦系統(tǒng)和問(wèn)答系統(tǒng)等領(lǐng)域有著重要的應(yīng)用D.構(gòu)建知識(shí)圖譜非常簡(jiǎn)單,不需要大量的人力和時(shí)間投入11、人工智能在智能客服領(lǐng)域的應(yīng)用越來(lái)越廣泛。假設(shè)一個(gè)企業(yè)要部署智能客服系統(tǒng)。以下關(guān)于智能客服的描述,哪一項(xiàng)是不正確的?()A.能夠快速回答常見(jiàn)問(wèn)題,提高客戶服務(wù)的響應(yīng)速度B.可以通過(guò)不斷學(xué)習(xí)和優(yōu)化,提高回答的準(zhǔn)確性和滿意度C.智能客服能夠完全理解客戶的復(fù)雜情感和意圖,提供個(gè)性化的服務(wù)D.與人工客服相結(jié)合,可以提供更優(yōu)質(zhì)的客戶服務(wù)體驗(yàn)12、在人工智能的知識(shí)圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),以建立實(shí)體之間的關(guān)系。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史人物和事件的知識(shí)圖譜,以下哪種數(shù)據(jù)源對(duì)于豐富和準(zhǔn)確的圖譜構(gòu)建是最有價(jià)值的?()A.百科全書(shū)和歷史書(shū)籍B.社交媒體上的相關(guān)討論C.個(gè)人博客和論壇帖子D.未經(jīng)證實(shí)的網(wǎng)絡(luò)傳聞13、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)一個(gè)農(nóng)場(chǎng)使用人工智能來(lái)監(jiān)測(cè)作物生長(zhǎng)和病蟲(chóng)害情況。以下關(guān)于人工智能在農(nóng)業(yè)中的應(yīng)用描述,哪一項(xiàng)是錯(cuò)誤的?()A.通過(guò)圖像識(shí)別技術(shù)可以及時(shí)發(fā)現(xiàn)病蟲(chóng)害的跡象,采取相應(yīng)的防治措施B.利用傳感器收集的數(shù)據(jù)和分析模型,優(yōu)化灌溉和施肥方案C.人工智能可以完全替代農(nóng)民的經(jīng)驗(yàn)和判斷,自主管理農(nóng)場(chǎng)的所有生產(chǎn)活動(dòng)D.結(jié)合天氣預(yù)報(bào)和市場(chǎng)需求預(yù)測(cè),制定合理的種植計(jì)劃14、在人工智能的強(qiáng)化學(xué)習(xí)應(yīng)用中,比如訓(xùn)練一個(gè)智能體在游戲中獲得高分,以下哪個(gè)因素對(duì)于學(xué)習(xí)效果和收斂速度可能具有重要影響?()A.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)B.策略網(wǎng)絡(luò)的架構(gòu)C.環(huán)境的復(fù)雜度D.以上都是15、人工智能中的自動(dòng)推理技術(shù)在邏輯證明、問(wèn)題求解等方面發(fā)揮著作用。假設(shè)我們要證明一個(gè)復(fù)雜的數(shù)學(xué)定理,使用自動(dòng)推理系統(tǒng)。那么,關(guān)于自動(dòng)推理,以下哪一項(xiàng)是不正確的?()A.可以基于邏輯規(guī)則和已知事實(shí)進(jìn)行推導(dǎo)B.能夠處理不確定和模糊的信息C.對(duì)于復(fù)雜問(wèn)題可能會(huì)面臨計(jì)算復(fù)雜性的挑戰(zhàn)D.其結(jié)果的正確性完全依賴于輸入的前提和規(guī)則的準(zhǔn)確性二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)說(shuō)明人工智能在社會(huì)發(fā)展戰(zhàn)略規(guī)劃和路徑選擇中的應(yīng)用。2、(本題5分)解釋人工智能在碳排放監(jiān)測(cè)和管理中的方法。3、(本題5分)簡(jiǎn)述人工智能在智能成本效率分析中的技術(shù)。4、(本題5分)解釋人工智能在智能營(yíng)銷效果評(píng)估中的方法。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Python中的PyTorch框架,構(gòu)建一個(gè)基于多頭注意力機(jī)制的Transformer模型,對(duì)機(jī)器翻譯任務(wù)進(jìn)行優(yōu)化。2、(本題5分)利用Python的OpenCV庫(kù)和深度學(xué)習(xí)框架,實(shí)現(xiàn)一個(gè)實(shí)時(shí)的人臉表情識(shí)別系統(tǒng)。能夠從攝像頭獲取實(shí)時(shí)圖像,識(shí)別出人的喜怒哀樂(lè)等表情,并給出相應(yīng)的提示和分析。3、(本題5分)在Python中,運(yùn)用粒子濾波算法對(duì)一個(gè)動(dòng)態(tài)系統(tǒng)進(jìn)行狀態(tài)估計(jì)。定義系統(tǒng)模型和觀測(cè)方程,展示濾波過(guò)程和估計(jì)結(jié)果。4、(本題5分)使用Python中的OpenCV庫(kù),實(shí)現(xiàn)對(duì)視頻中的植物生長(zhǎng)監(jiān)測(cè)和分析,例如測(cè)量植物的高度、葉片面積等。5、(本題5分)利用Python的PyTorch庫(kù),構(gòu)建一個(gè)多層卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,對(duì)衛(wèi)星圖像中的道路網(wǎng)絡(luò)進(jìn)行提取和分析。研究不同的圖像增強(qiáng)技術(shù)和模型架構(gòu)對(duì)提取效果的影響。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)以某智能倉(cāng)儲(chǔ)管理系統(tǒng)為例,探
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年醫(yī)療器械專業(yè)代理權(quán)委托及全國(guó)市場(chǎng)拓展服務(wù)協(xié)議
- 高空作業(yè)安全防護(hù)設(shè)備租賃合作協(xié)議
- 二零二五年度城市地下綜合管廊建設(shè)與智能交通系統(tǒng)融合合作協(xié)議
- 2025年醫(yī)療救援機(jī)構(gòu)急診醫(yī)護(hù)團(tuán)隊(duì)緊急調(diào)用及聘用合同
- 2025年新能源汽車廣告投放與車輛掛靠服務(wù)合作協(xié)議
- 山東省濟(jì)寧市2024-2025學(xué)年高一下學(xué)期期末考試 思想政治試卷
- 2025年5G基站建設(shè)及設(shè)備安裝一體化服務(wù)合同
- 2025年綠色建筑BIM技術(shù)實(shí)施與安全評(píng)估全面合作協(xié)議
- 宿舍樓安全出口標(biāo)識(shí)升級(jí)改造及日常維護(hù)管理服務(wù)合同
- 2025年綠色環(huán)保產(chǎn)業(yè)知識(shí)產(chǎn)權(quán)質(zhì)押貸款合作合同
- GB/T 43137-2023土方機(jī)械液壓破碎錘術(shù)語(yǔ)和商業(yè)規(guī)格
- 京東集團(tuán)員工手冊(cè)-京東
- 2023年蘇州市星海實(shí)驗(yàn)中學(xué)小升初分班考試數(shù)學(xué)模擬試卷及答案解析
- GB/T 37915-2019社區(qū)商業(yè)設(shè)施設(shè)置與功能要求
- GB/T 31298-2014TC4鈦合金厚板
- GB/T 27746-2011低壓電器用金屬氧化物壓敏電阻器(MOV)技術(shù)規(guī)范
- GB/T 22237-2008表面活性劑表面張力的測(cè)定
- GB/T 13667.3-2003手動(dòng)密集書(shū)架技術(shù)條件
- 導(dǎo)軌及線槽項(xiàng)目投資方案報(bào)告模板
- 復(fù)旦大學(xué)<比較財(cái)政學(xué)>課程教學(xué)大綱
- 書(shū)法的章法布局(完整版)
評(píng)論
0/150
提交評(píng)論