難點解析冀教版8年級下冊期末試題附答案詳解(典型題)_第1頁
難點解析冀教版8年級下冊期末試題附答案詳解(典型題)_第2頁
難點解析冀教版8年級下冊期末試題附答案詳解(典型題)_第3頁
難點解析冀教版8年級下冊期末試題附答案詳解(典型題)_第4頁
難點解析冀教版8年級下冊期末試題附答案詳解(典型題)_第5頁
已閱讀5頁,還剩34頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

冀教版8年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,把一長方形紙片ABCD的一角沿AE折疊,點D的對應點落在∠BAC內(nèi)部.若,且,則∠DAE的度數(shù)為()A.12° B.24° C.39° D.45°2、為了解某市七年級學生的一分鐘跳繩成績,從該市七年級學生中隨機抽取100名學生進行調(diào)查,以下說法正確的是()A.這100名七年級學生是總體的一個樣本 B.該市七年級學生是總體C.該市每位七年級學生的一分鐘跳繩成績是個體 D.100名學生是樣本容量3、如圖①,在?ABCD中,動點P從點B出發(fā),沿折線B→C→D→B運動,設點P經(jīng)過的路程為x,△ABP的面積為y,y是x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的a值為()A.3 B.4 C.14 D.184、在平面直角坐標系中,以點(2,3)為圓心,2為半徑的圓一定與()A.x軸相交 B.y軸相交 C.x軸相切 D.y軸相切5、一次函數(shù),,且隨的增大而減小,則其圖象可能是()A. B.C. D.6、如圖,點A,B,C在同一直線上,且,點D,E分別是AB,BC的中點.分別以AB,DE,BC為邊,在AC同側(cè)作三個正方形,得到三個平行四邊形(陰影部分)的面積分別記作,,,若,則等于()A. B. C. D.7、下列說法錯誤的是()A.平行四邊形對邊平行且相等 B.菱形的對角線平分一組對角C.矩形的對角線互相垂直 D.正方形有四條對稱軸第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、已知點A(a,-3)與點B(3,b)關于y軸對稱,則a+b=_____________________.2、如圖,正比例函數(shù)y=kx(k≠0)的圖像經(jīng)過點A(2,4),AB⊥x軸于點B,將△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,則直線AC的函數(shù)表達式為_____.3、已知點A(m-1,3)與點B(2,n+1)關于y軸對稱,則m+n=_______.4、如圖,正方形的對角線、相交于點O,等邊繞點O旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當時,的度數(shù)為____________.5、如圖,在中,∠ACB=90°,DEBC,DE=AC,若AC=2,AD=DB=4,∠ADC=30°.以下四個結論:①四邊形ACED是平行四邊形;②∠ABE=;③AB=;④點F是AD中點,點G、H分別是線段BC、AB上的動點,則FG+GH的最小值為.正確的是_____.(填序號)6、點(2,-3)關于x軸的對稱點的坐標是______.7、如圖,正方形ABCD中,E是BC邊上的一點,連接AE,將AB邊沿AE折疊到AF.延長EF交DC于G,點G恰為CD邊中點,連接AG,CF,AC.若AB=6,則△AFC的面積為_______.8、過某個多邊形一個頂點的所有對角線,將此多邊形分成7個三角形,則此多邊形的邊數(shù)______.三、解答題(7小題,每小題10分,共計70分)1、如圖,正方形ABCD中,E為BD上一點,AE的延長線交BC的延長線于點F,交CD于點H,G為FH的中點.(1)求證:AE=CE;(2)猜想線段AE,EG和GF之間的數(shù)量關系,并證明.2、已知在與中,,點在同一直線上,射線分別平分.(1)如圖1,試說明的理由;(2)如圖2,當交于點G時,設,求與的數(shù)量關系,并說明理由;(3)當時,求的度數(shù).3、在初中階段的函數(shù)學習中,我們經(jīng)歷了列表、描點、連線畫函數(shù)圖象,并結合圖象研究函數(shù)性質(zhì)的過程,以下是我們研究函數(shù)的性質(zhì)及其應用的部分過程,請按要求完成下列各小題.x…﹣4﹣3﹣2﹣1012345…y…6a0﹣1.5﹣2﹣1.5020b…(1)表中a=;b=;(2)根據(jù)表中的數(shù)據(jù)畫出該函數(shù)的大致圖象,并根據(jù)函數(shù)圖象寫出該函數(shù)的一條性質(zhì).(3)已知直線的圖象如圖所示,結合你所畫的函數(shù)圖象,當y1>y2時直接寫出x的取值范圍.(保留1位小數(shù),誤差不超過0.2)4、已知線段AB,如果將線段AB繞點A逆時針旋轉(zhuǎn)90°得到線段AC,則稱點C為線段AB關于點A的“逆轉(zhuǎn)點”,點C為線段AB關于點A的逆轉(zhuǎn)點的示意圖如圖1:(1)如圖2,在正方形ABCD中,點為線段DA關于點D的逆轉(zhuǎn)點;(2)在平面直角坐標系xOy中,點P(x,0),點E是y軸上一點,.點F是線段EO關于點E的逆轉(zhuǎn)點,點M(縱坐標為t)是線段EP關于點E的逆轉(zhuǎn)點.①當時,求點M的坐標;②當,直接寫出x的取值范圍:.5、如圖,在平面直角坐標系中,點O為坐標原點,B(0,n),點A在x軸的負半軸上,點C(m,0),且+|n﹣2|=0.(1)求∠BCO的度數(shù);(2)點P從A點出發(fā)沿射線AO以每秒2個單位長度的速度運動,同時,點Q從B點出發(fā)沿射線BO以每秒1個單位長度的速度運動,設△APQ的面積為S,點P運動的時間為t,求用t表示S的代數(shù)式(直接寫出t的取值范圍);(3)在(2)的條件下,當點P在x軸的正半軸上,連接AQ、BP、PQ,∠BQP=2∠ABC=2∠OAQ,且四邊形ABPQ的面積為25,求PQ的長.6、為了提升學生的交通安全意識,學校計劃開展全員“交通法規(guī)”知識競賽,七(3)班班主任趙老師給全班同學定下的目標是:合格率達90%,優(yōu)秀率達25%(x<60為不合格;x≥60為合格;x≥90為優(yōu)秀),為了解班上學生對“交通法規(guī)”知識的認知情況,趙老師組織了一次模擬測試,將全班同學的測試成績整理后作出如下頻數(shù)分布直方圖.(圖中的70~80表示,其余類推)(1)七(3)班共有多少名學生?(2)趙老師對本次模擬測試結果不滿意,請通過計算給出一條她不滿意的理由;(3)模擬測試后,通過強化教育,班級在學校“交通法規(guī)”競賽中成績有了較大提高,結果優(yōu)秀人數(shù)占合格人數(shù)的,比不合格人數(shù)多10人.本次競賽結果是否完成了趙老師預設的目標?請說明理由.7、已知某函數(shù)圖象如圖所示,請回答下列問題:(1)自變量x的取值范圍是;(2)函數(shù)y的取值范圍是;(3)當x=時,函數(shù)有最大值為;(4)當x的取值范圍是時,y隨x的增大而增大.-參考答案-一、單選題1、C【解析】【分析】由折疊的性質(zhì)得到,由長方形的性質(zhì)得到,根據(jù)角的和差倍分得到,整理得,最后根據(jù)解題.【詳解】解:折疊,是矩形故選:C.【點睛】本題考查角的計算、折疊性質(zhì)、數(shù)形結合思想等知識,是重要考點,掌握相關知識是解題關鍵.2、C【解析】【分析】總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中所抽取的一部分個體,而樣本容量則是指樣本中個體的數(shù)目.我們在區(qū)分總體、個體、樣本、樣本容量,這四個概念時,首先找出考查的對象.從而找出總體、個體.再根據(jù)被收集數(shù)據(jù)的這一部分對象找出樣本,最后再根據(jù)樣本確定出樣本容量.【詳解】解:A.這100名七年級學生的一分鐘跳繩成績是總體的一個樣本,故該選項不符合題意;B、該市七年級學生的一分鐘跳繩成績是總體,故該選項不符合題意;C、該市每位七年級學生的一分鐘跳繩成績是個體,故該選項符合題意;D、樣本容量是100,故該選項不符合題意;故選:C.【點睛】本題考查了總體、個體、樣本、樣本容量,解題要分清具體問題中的總體、個體與樣本,關鍵是明確考查的對象.總體、個體與樣本的考查對象是相同的,所不同的是范圍的大?。畼颖救萘渴菢颖局邪膫€體的數(shù)目,不能帶單位.3、A【解析】【分析】由圖②知,BC=6,CD=14-6=8,BD=18-14=4,再通過解直角三角形,求出△CBD高,進而求解.【詳解】解:由圖②知,BC=6,CD=14-6=8,BD=18-14=4,過點B作BH⊥DC于點H,設CH=x,則DH=8-x,則BH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x)2=62-x2,解得:則:,則,故選:A.【點睛】本題考查的是動點圖象問題,此類問題關鍵是:弄清楚不同時間段,圖象和圖形的對應關系,進而求解.4、D【解析】【分析】根據(jù)點(2,3)到y(tǒng)軸的距離為2,到x軸的距離為3即可判斷.【詳解】∵圓是以點(2,3)為圓心,2為半徑,∴圓心到y(tǒng)軸的距離為2,到x軸的距離為3,則2=2,2<3∴該圓必與y軸相切,與x軸相離.故選D.【點睛】本題是直線和圓的位置關系及坐標與圖形的基礎應用題,在中考中比較常見,一般以選擇題、填空題形式出現(xiàn),屬于基礎題,難度不大.5、B【解析】【分析】根據(jù)一次函數(shù)的圖象是隨的增大而減小,可得,再由,可得,即可求解.【詳解】解:一次函數(shù)的圖象是隨的增大而減小,∴,;又,,一次函數(shù)的圖象經(jīng)過第二、三、四象限.故選:B【點睛】本題主要考查了一次函數(shù)的圖象和性質(zhì),熟練掌握一次函數(shù)的圖象和性質(zhì)是解題的關鍵.6、B【解析】【分析】設BE=x,根據(jù)正方形的性質(zhì)、平行四邊形的面積公式分別表示出S1,S2,S3,根據(jù)題意計算即可.【詳解】∵,∴AB=2BC,又∵點D,E分別是AB,BC的中點,∴設BE=x,則EC=x,AD=BD=2x,∵四邊形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,∴BD=DH=2x,∴S1=DH?AD=,即2x?2x=,∴x2=,∵BD=2x,BE=x,∴S2=MH?BD=(3x?2x)?2x=2x2,S3=EN?BE=x?x=x2,∴S2+S3=2x2+x2=3x2=,故選:B.【點睛】本題考查的是正方形的性質(zhì)、平行四邊形的性質(zhì),掌握正方形的四條邊相等、四個角都是90°是解題的關鍵.7、C【解析】【分析】根據(jù)矩形的性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)和正方形的性質(zhì)分別進行判斷即可.【詳解】解:A、平行四邊形對邊平行且相等,正確,不符合題意;B、菱形的對角線平分一組對角,正確,不符合題意;C、矩形的對角線相等,不正確,符合題意;D、正方形有四條對稱軸,正確,不符合題意;故選:C.【點睛】本題考查了矩形的性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)和正方形的性質(zhì),掌握以上性質(zhì)定理是解題的關鍵.二、填空題1、【解析】【分析】由點A(a,-3)與點B(3,b)關于y軸對稱,可得從而可得答案.【詳解】解:點A(a,-3)與點B(3,b)關于y軸對稱,故答案為:【點睛】本題考查的是關于軸對稱的兩個點的坐標特點,掌握“關于軸對稱的兩個點的橫坐標互為相反數(shù),縱坐標不變”是解本題的關鍵.2、y=-0.5x+5【解析】【分析】直接把點A(2,4)代入正比例函數(shù)y=kx,求出k的值即可;由A(2,4),AB⊥x軸于點B,可得出OB,AB的長,再由△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,由旋轉(zhuǎn)不變性的性質(zhì)可知DC=OB,AD=AB,故可得出C點坐標,再把C點和A點坐標代入y=ax+b,解出解析式即可.【詳解】解:∵正比例函數(shù)y=kx(k≠0)經(jīng)過點A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x軸于點B,∴OB=2,AB=4,∵△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)設直線AC的解析式為y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式為:y=-0.5x+5【點睛】本題考查的是一次函數(shù)圖象上點的坐標特點及圖形旋轉(zhuǎn)的性質(zhì),熟知一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.3、1【解析】【分析】根據(jù)關于y軸對稱的點,縱坐標不變,橫坐標互為相反數(shù),列出方程求解即可.【詳解】解:∵點A(m-1,3)與點B(2,n+1)關于y軸對稱,∴m-1=-2,n+1=3,解得,m=-1,n=2,m+n=-1+2=1,故答案為:1.【點睛】本題考查了關于y軸對稱點的坐標變化,解題關鍵是明確關于y軸對稱的點,縱坐標不變,橫坐標互為相反數(shù).4、或【解析】【分析】分兩種情況:①根據(jù)正方形與等邊三角形的性質(zhì)得OC=OD,∠COD=90°,OE=OF,∠EOF=60°,可判斷△ODE≌△OCF,則∠DOE=∠COF,于是可求∠DOF,即可得出答案;②同理可證得△ODE≌△OCF,所以∠DOE=∠COF,于是可求∠BOF,即可得答案.【詳解】解:情況1,如下圖:∵四邊形ABCD是正方形,∴OD=OC,∠AOD=∠COD=90°,∵△OEF是等邊三角形,∴OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCF(SSS),∴∠DOE=∠COF,∴∠DOF=∠COE,∴∠DOF=(∠COD-∠EOF)=×(90°﹣60°)=15°,∴∠AOF=∠AOD+∠DOF=90°+15°=105°;情況2,如下圖:連接DE、CF,∵四邊形ABCD為正方形,∴OC=OD,∠AOD=∠COB=90°,∵△OEF為等邊三角形,∴OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCF(SSS),∴∠DOE=∠COF,∴∠DOE=∠COF=(360°-∠COD-∠EOF)=×(360°﹣90°﹣60°)=105°,∴∠BOF=∠COF-∠COB=105°-90°=15°,∴∠AOF=∠AOB-∠BOF=90°-15°=75°,故答案為:105°或75°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了正方形與等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),做題的關鍵是注意兩種情況和證三角形全等.5、①③④【解析】【分析】證明,結合DE=AC,可判定結論①;假設∠ABE=,在中,根據(jù)勾股定理得到,則假設不成立,可判斷結論②;在中和中,利用勾股定理可求出AB的值,即可判斷結論③;作點F關于BC對稱的點F’,作于點H,與BC相交于點G,則,,根據(jù)“直線外一點到直線的距離,垂線段最短”可知,此時FG+GH有最小值.通過勾股定理分別求得FG、GH的值,相加即可判斷結論④.【詳解】解:∵∠ACB=90°,DEBC,∴∠CDE=∠ACB=90°,∴又∵DE=AC,∴四邊形ACED是平行四邊形;故結論①正確.∵AD=DB=4,∠ADC=30°,∴∠ABC=∠DAB=,假設∠ABE=,則,∴在中,,∴,∴假設不成立;故結論②錯誤.在中,,,∴,∴∴在中,,,∴,即AB=;故結論③正確.如圖所示,作點F關于BC對稱的點F’,作于點H,與BC相交于點G,則,,根據(jù)“直線外一點到直線的距離,垂線段最短”可知,此時FG+GH有最小值.連接AG,與BC相交于點M,∵,∠ABC=,∴,∴,∵四邊形ACED是平行四邊形,∴,∴,∴又∵點F是AD中點,點F與點F’關于BC對稱,AD=4,∴,∴,∴,∴為等腰直角三角形,∴,,∴,又∵∠DAB=,∴,∴在中,,∵點F是AD中點,點F與點F’關于BC對稱,,∴,,∴,∵,∴,∴在中,,∴,即FG+GH的最小值為;故結論④正確.故答案為:①③④.【點睛】本題考查勾股定理的應用.其中涉及平行線的判定,平行四邊形的判定和性質(zhì),直角三角形中角所對的直角邊等于斜邊的一半,等腰直角三角形的判定和性質(zhì),“一定兩動”求線段最小值等問題.綜合性較強.6、(2,3)【解析】【分析】根據(jù)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù)解答.【詳解】解:點(2,?3)關于x軸的對稱點的坐標是(2,3).故答案為:(2,3).【點睛】本題考查了關于x軸、y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).7、3.6##【解析】【分析】首先通過HL證明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,設BE=x,則CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入計算即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵將AB邊沿AE折疊到AF,∴AB=AF,∠B=∠AFB=90°,在Rt△ABE和Rt△AFB中,,∴Rt△ABE≌Rt△AFB(HL),∴BE=EF,同理可得:DG=FG,∵點G恰為CD邊中點,∴DG=FG=3,設BE=x,則CE=6﹣x,EG=3+x,在Rt△CEG中,由勾股定理得:(x+3)2=32+(6﹣x)2,解得x=2,∴BE=EF=2,CE=4,∴S△CEG=×4×3=6,∵EF∶FG=2∶3,∴S△EFC=×6=,∴S△AFC=S△AEC﹣S△AEF﹣S△EFC=×4×6﹣×2×6﹣=12﹣6﹣=3.6.故答案為:3.6.【點睛】本題考查了三角形全等的性質(zhì)與判定,勾股定理,正方形的性質(zhì),根據(jù)勾股定理求得BE的長是解題的關鍵.8、9【解析】【分析】根據(jù)n邊形從一個頂點出發(fā)可引出(n-3)條對角線,可組成n-2個三角形,依此可得n的值.【詳解】解:由題意得,n-2=7,解得:n=9,即這個多邊形是九邊形.故答案為:9.【點睛】本題考查了多邊形的對角線,求對角線條數(shù)時,直接代入邊數(shù)n的值計算,而計算邊數(shù)時,需利用方程思想,解方程求n.三、解答題1、(1)見解析(2)AE2+GF2=EG2,證明見解析【解析】【分析】(1)根據(jù)“SAS”證明△ADE≌△CDE即可;(2)連接CG,可得CG=GF=GH=FH,再證明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,進而可得線段AE,EG和GF之間的數(shù)量關系.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠ADE=∠CDE,在△ADE和△CDE中,∴△ADE≌△CDE,∴AE=CE;(2)AE2+GF2=EG2,理由:連接CG∵△ADE≌△CDE,∴∠1=∠2.∵G為FH的中點,∴CG=GF=GH=FH,∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG=90°,在Rt△CEG中,CE2+CG2=EG2,∴AE2+GF2=EG2.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形的性質(zhì),以及勾股定理等知識,證明△ADE≌△CDE是解(1)的關鍵,證明∠ECG=90°是解(2)的關鍵.2、(1)理由見解析(2),理由見解析(3)【解析】【分析】(1),,可知,進而可說明;(2)如圖1所示,連接并延長至點K,分別平分,則設,為的外角,,同理,,得;又由(1)中證明可知,,進而可得到結果;(3)如圖2所示,過點C作,則,,可得,由(1)中證明可得,在中,,即,進而可得到結果.(1)證明:又在和中.(2)解:.理由如下:如圖1所示,連接并延長至點K分別平分則設為的外角同理可得即.又由(1)中證明可知由三角形內(nèi)角和公式可得即.(3)解:當時,如圖2所示,過點C作,則,即由(1)中證明可得在中,根據(jù)三角形內(nèi)角和定理有即即即,解得:故.【點睛】本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、三角形內(nèi)角和定理、平行線的性質(zhì)、角平分線的性質(zhì)等知識,連接并延長,利用三角形外角性質(zhì)證得是解題的關鍵.3、(1)2.5;﹣2(2)見解析(3)x<﹣2或1.5<x<5【解析】【分析】(1)根據(jù)解析式計算即可;(2)利用描點法畫出函數(shù)圖象,觀察圖象可得函數(shù)的一條性質(zhì);(3)根據(jù)圖象即可求解.(1)解:當x=﹣3時,y1=×(﹣3)2﹣2=2.5,∴a=2.5,當x=5時,y1=2﹣2×|5﹣3|=﹣2,∴b=﹣2,故答案為:2.5,﹣2;(2)解:畫出函數(shù)圖象如圖所示:由圖象得:x<0時,y隨x的增大而減?。?3)畫出直線的圖象如圖所示,由圖象可知,當y1>y2時,x的取值范圍為:x<﹣2或1.5<x<5.【點睛】本題考查函數(shù)圖象和性質(zhì),能夠從表格中獲取信息,利用描點法畫出函數(shù)圖象,并結合函數(shù)圖象解題是關鍵.4、S=4×4=1③如圖4中,當8t<12時,重疊部分是四邊形BMPC,S=16﹣4×=48﹣2t.④當t≥12時,S=0.綜上所述:S【點睛】本題考查矩形的性質(zhì)、全等三角形的判定和性質(zhì)、二次根式的性質(zhì)、列函數(shù)解析式等知識,解題的關鍵是學會用分類討論的思想思考問題,學會添加常用輔助線,構造全等三角形6.(1)C(2)①或;②-5≤x<1或3≤x<9【解析】【分析】(1)根據(jù)逆轉(zhuǎn)點的定義判斷即可.(2)①點E的位置有兩種情形:分兩種情形,發(fā)現(xiàn)畫出圖形求解即可.②根據(jù)﹣1≤t<5,結合①判斷即可.(1)解:根據(jù)“逆轉(zhuǎn)點”的定義可知,點C為線段DA關于點D的逆轉(zhuǎn)點.故答案為C.(2)解:①∵E是y軸上的一點,OE=4,∴點E的位置有兩種情形:當點E在y軸的正半軸上時,作出線段E1O關于點E1的逆轉(zhuǎn)點F1以及線段E1P關于點E1的逆轉(zhuǎn)點M1∵∠PE1M1=∠OE1F1=∴∠PE1O=∠M1E1F1∵OE1=F1E1=4,E1P=E1M1∴∴∠F1=∠POE1=M1F1=OP=3∴當點E在y軸的負半軸上的點E2時,同法可得,綜上所述,滿足條件的點M的坐標為或.②由①可知,當-1≤t<5時,-5≤x<1或3≤x<9.故答案為:-5≤x<1或3≤x<9.【點睛】本題考查了旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),坐標圖與圖形的變化等知識,解題的關鍵是理解題意,學會用分類討論的思想思考問題,屬于中考??碱}型.5、(1)45°(2)S=(3)5【解析】【分析】(1)根據(jù)非負數(shù)的性質(zhì)求得m,n的值,進而求得,即可證明△OBC是等腰直角三角形,即可求得∠BCO的度數(shù);(2)分點在軸正半軸,原點,軸負半軸三種情況,根據(jù)點的運動表示出線段長度,進而根據(jù)三角形的面積公式即可列出代數(shù)式;(3)過點作BD⊥AQ,連接EQ,根據(jù)四邊形的面積求得t=5,進而求得AP=10,BQ=5,由∠BQP=2∠ABC=2∠OAQ,設∠ABC=∠OAQ=α,∠BAC=β,則∠BQP=2α,證明△ADE≌△BDQ,進而可得,BQ=AE=5PE=AP?AE=10?5=5,進一步導角可得∠PEQ=∠PQE,根據(jù)等角對等邊即可求得PQ.(1)m+2+∴m=?2,n=2∴B(0,2),C∴BO=2,CO=2∵∠BOC=90°△OBC是等腰直角三角形,∠BCO=45°(2)①當點在軸正半軸時,如圖,∵BQ=t,AP=2t,,QO=2?t∵OQ>0,t>00<t<2S=1②當點在原點時,A,P,Q都在軸上,不能構成三角形,則t=2時,S不存在③當點在軸負半軸時,如圖,∵BQ=t,AP=2t,,QO=t?2∵OQ>0,t>0t>2S=1綜上所述:S=(3)如圖,過點作BD⊥AQ,連接EQ∵BQ=t,AP=2t(t>0)∴∴t=5∴BQ=5,AP=10∠BQP=2∠ABC=2∠OAQ設∠ABC=∠OAQ=α,∠BAC=β,則∠BQP=2α,∠BCO=∠ABC+∠BAC=α+β=45°∴∠BAD=∠C+∠CAD=β+α=45°∴△ADB是等腰直角三角形∴BD=AD∵∠AOQ=∠BDQ=90°∴∠OAQ+∠AQO=∠DBQ+∠AQO∠OAQ=∠DBQ=α在△ADE和△BDQ中∠ADE=∠BDQ∴△ADE≌△BDQ∴DE=DQ,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論