難點解析-人教版8年級數(shù)學上冊《全等三角形》同步測試試題(解析版)_第1頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》同步測試試題(解析版)_第2頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》同步測試試題(解析版)_第3頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》同步測試試題(解析版)_第4頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》同步測試試題(解析版)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在和中,,則下列結論中錯誤的是(

)A. B. C. D.E為BC中點2、如圖,,,要使,直接利用三角形全等的判定方法是A.AAS B.SAS C.ASA D.SSS3、已知銳角,如圖,(1)在射線上取點,,分別以點為圓心,,長為半徑作弧,交射線于點,;(2)連接,交于點.根據(jù)以上作圖過程及所作圖形,下列結論錯誤的是(

)A. B.C.若,則 D.點在的平分線上4、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結論有(

)個A.2 B.3 C.4 D.55、如圖,在和中,,,,線段BC的延長線交DE于點F,連接AF.若,,,則線段EF的長度為(

)A.4 B. C.5 D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,是的角平分線,于,的面積是,則__________.2、如圖,在△ABC中,點D是AC的中點,分別以AB,BC為直角邊向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,連接MN,已知MN=4,則BD=_________.3、如圖,BE交AC于點M,交CF于點D,AB交CF于點N,,給出的下列五個結論中正確結論的序號為.①;②;③;④;⑤.4、如圖,點,,在同一直線上,,,,,若線段與線段的長度之比為,則線段與線段的長度之比為______.5、如圖,在四邊形中,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動,設運動時間為,當與以,,為頂點的三角形全等時,點的運動速度為______.三、解答題(5小題,每小題10分,共計50分)1、如圖,PA=PB,∠PAM+∠PBN=180°,求證:OP平分∠AOB.2、如圖,在△ABC中,AB⊥AC,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于點E;(1)若B、C在DE的同側(如圖1所示)求證:DE=BD+CE;(2)若B、C在DE的兩側(如圖2所示),其他條件不變,則DE,BD,CE具有怎樣的等量關系?寫出等量關系,不需證明.3、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.4、如圖,在四邊形中,,,分別是,上的點,連接,,.(1)如圖①,,,.求證:;

(2)如圖②,,當周長最小時,求的度數(shù);(3)如圖③,若四邊形為正方形,點、分別在邊、上,且,若,,請求出線段的長度.5、如圖,沿AC方向開山修路,為了加快施工進度,要在山的另一邊同時施工,工人師傅在AC上取一點B,在小山外取一點D,連接BD,并延長使DF=BD,過F點作AB的平行線段MF,連接MD,并延長,在其延長線上取一點E,使DE=DM,在E點開工就能使A、C、E成一條直線,請說明其中的道理;-參考答案-一、單選題1、D【解析】【分析】首先證明,推出,,由,推出,推出,即可一一判斷.【詳解】解:∵,∴和為直角三角形,在和中,,∴,∴,,,∵,∴,∴,故A、B、C正確,故選:D.【考點】本題主要考查全等三角形的判定和性質,解題的關鍵是熟練掌握全等三角形的判定和性質.2、B【解析】【分析】根據(jù)平行線性質得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根據(jù)全等三角形的判定定理SAS即可推出△ABD≌△CDB,從而推出∠A=∠C,即可得出答案.【詳解】,,在和中,,≌,,故選B.【考點】本題考查了平行線性質、全等三角形的判定與性質的應用,熟練掌握全等三角形的判定與性質定理是解題的關鍵.3、C【解析】【分析】根據(jù)題意可知,即可推斷結論A;先證明,再證明即可證明結論B;連接OP,可證明可證明結論D;由此可知答案.【詳解】解:由題意可知,,,故選項A正確,不符合題意;在和中,,,在和中,,,,故選項B正確,不符合題意;連接OP,,,在和中,,,,點在的平分線上,故選項D正確,不符合題意;若,,則,而根據(jù)題意不能證明,故不能證明,故選項C錯誤,符合題意;故選:C.【考點】本題考查角平分線的判定,全等三角形的判定與性質,明確以某一半徑畫弧時,準確找到相等的線段是解題的關鍵.4、B【解析】【分析】①正確.利用三角形內角和定理以及角平分線的定義即可解決問題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問題.③錯誤.利用反證法,假設成立,推出矛盾即可.④錯誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個顯然與條件矛盾,故③錯誤故選B.【考點】本題考查了角平分線的判定與性質,三角形全等的判定方法,三角形內角和定理,三角形的面積等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.5、B【解析】【分析】證明,,根據(jù)全等三角形對應邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點】本題考查全等三角形的判定與性質、線段的和差等知識,是重要考點,掌握相關知識是解題關鍵.二、填空題1、2cm【解析】【分析】過點D作,垂足為點F,根據(jù)BD是∠ABC的角平分線,得DE=DF,根據(jù)等高的三角形的面積之比等于其底邊長之比,得△BDC與△BDA的面積之比,再求出△BDA的面積,進而求出DE.【詳解】解:如圖,過點D作,垂足為點F,∵BD是∠ABC的角平分線,,∴DE=DF,∵的面積是,∴,即,∴DE=2cm.故答案為:2cm.【考點】本題考查了三角形的問題,掌握角平分線的性質、等高的三角形的面積之比等于其底邊長之比是解題的關鍵.2、2【解析】【分析】延長BD到E,使DE=BD,連接AE,證明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根據(jù)△ABM和△BCN是等腰直角三角形,證明△MBN≌△BAE,可得MN=BE,進而可得BD與MN的數(shù)量關系即可求解.【詳解】解:如圖,延長BD到E,使DE=BD,連接AE,∵點D是AC的中點,∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,∵∠BCA+∠BAC+∠ABC=180°,∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案為:2.【考點】本題考查了全等三角形的判定與性質、等腰直角三角形,解決本題的關鍵是掌握全等三角形的判定與性質.3、①;②;③;⑤【解析】【分析】①先證明△ABE≌△ACF,然后根據(jù)全等三角形的性質即可判定;②利用全等三角形的性質即可判定;③根據(jù)ASA即可證明三角形全等;④無法證明該結論;⑤根據(jù)ASA證明三角形全等即可.【詳解】解:在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,故②正確,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠1=∠2,故①正確,∵△ABE≌△ACF,∴AB=AC,在△CAN和△BAM中,,∴△CAN≌△BAM(ASA),故③正確,CD=DN不能證明成立,故④錯誤在△AFN和△AEM中,∴△AFN≌△AEM(ASA),故⑤正確.結論中正確結論的序號為①;②;③;⑤.故答案為①;②;③;⑤.【考點】本題主要考查了三角形全等的判定和性質,解題的關鍵是正確尋找全等三角形全等的條件.4、或【解析】【分析】根據(jù)平行線的性質得到CE⊥BC,根據(jù)余角的性質得到∠ACB=∠E,根據(jù)全等三角形的性質得到CD=AB,BC=CE,等量代換即可得到結論.【詳解】解:∵AB∥EC,AB⊥BC,∴CE⊥BC,∴∠B=∠DCE=90°,∵AC⊥DE,∴∠ACD+∠CDE=∠CDE+∠E=90°,∴∠ACB=∠E,∵AC=DE,∴△ABC≌△DCE(AAS),∴CD=AB,BC=CE,∵線段AB與線段CE的長度之比為5:8,∴CD:BC=5:8,∴線段BD與線段DC的長度之比為3:5,故答案為:3:5.【考點】本題考查了平行線的性質,全等三角形的判定和性質,熟練掌握全等三角形的判定和性質定理是解題的關鍵.5、1或【解析】【分析】設點的運動速度為,由題意可得,與以,,為頂點的三角形全等時分為兩種情況:,再利用全等三角形的性質求解即可.【詳解】解:設點的運動速度為,由題意可得,∵∴與以,,為頂點的三角形全等時可分為兩種情況:①當時,∴,∴∴∴此時點的運動速度為;②當時,,∴,∴,此時點的運動速度為,故答案為:1或.【考點】本題主要考查三角形全等的性質,掌握全等三角形的對應邊相等是解題的關鍵,注意分情況討論.三、解答題1、詳見解析【解析】【分析】過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F(xiàn),根據(jù)等角的補角相等可得出∠PAE=∠PBF,結合∠AEP=∠BFP、PA=PB即可證出△APE≌△BPF(AAS),根據(jù)全等三角形的性質可得出PE=PF,進而可證出OP平分∠AOB.【詳解】如圖,過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F(xiàn),則∠PEA=∠PFB=90°.又∵∠PAM+∠PBN=180°,∠PBF+∠PBN=180°,∴∠PAM=∠PBF,即∠PAE=∠PBF.在△PAE與△PBF中,,∴△PAE≌△PBF(AAS).∴PE=PF.又∵PE⊥OM,PF⊥ON,∴OP平分∠AOB.【考點】本題考查了全等三角形的判定與性質以及角平分線的性質,利用全等三角形的判定定理AAS證出△APE≌△BPF是解題的關鍵.2、(1)見解析(2)DE=CE-BD【解析】【分析】(1)根據(jù)AAS證明△ADB≌△CEA,可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出結論;(2)由條件可以得出∠ADB=∠CEA=90°,∠BAD=∠ACE,再由AB=AC就可以得出△ADB≌△CEA,就可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出DE=CE-BD.(1)∵AB⊥AC,BD⊥DE,CE⊥DE∴∠BAC=90°,∠ADB=∠AEC=90°∴∠ACE+∠CAE=90°,∠BAD+∠CAE=90°,∴∠BAD=∠ACE,在△ADC與△BEC中,∠ADB=∠AEC=90°,∠BAD=∠ACE,AB=AC,∴△ADB≌△CEA(AAS),∴AD=CE,BD=AE,∵DE=AD+AE,∴DE=BD+CE;(2)DE=CE-BD理由:∵BD⊥AD,CE⊥AD,∴∠ADB=∠CEA=90°.∵AB⊥AC,∴∴∠BAD+∠CAE=90°.∵∠CAE+∠ACE=90°,∴∠BAD=∠ACE.在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE.∵AD=AE+ED,∴DE=AD-AE=CE-BD.【考點】本題考查了等腰直角三角形的性質的運用,全等三角形的判定及性質的運用,解答時證明三角形全等是解答本題的關鍵.3、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.點睛:本題考查了等腰三角形的判定,全等三角形的性質

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論