




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列關(guān)于隨機事件的概率描述正確的是()A.拋擲一枚質(zhì)地均勻的硬幣出現(xiàn)“正面朝上”的概率為0.5,所以拋擲1000次就一定有500次“正面朝上”B.某種彩票的中獎率為5%,說明買100張彩票有5張會中獎C.隨機事件發(fā)生的概率大于或等于0,小于或等于1D.在相同條件下可以通過大量重復(fù)實驗,用一個隨機事件的頻率去估計概率2、擲一枚質(zhì)地均勻的骰子,向上一面的點數(shù)大于2且小于5的概率是()A. B. C. D.3、如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠CBD的度數(shù)是()A.30° B.36° C.60° D.72°4、如圖,點A、B、C在上,,則的度數(shù)是()A.100° B.50° C.40° D.25°5、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6、在中,,,給出條件:①;②;③外接圓半徑為4.請在給出的3個條件中選取一個,使得BC的長唯一.可以選取的是()A.① B.② C.③ D.①或③7、下列事件中,是必然事件的是()A.剛到車站,恰好有車進站B.在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容D.任意畫一個三角形,其外角和是360°8、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在平行四邊形中,,,,以點為圓心,為半徑的圓弧交于點,連接,則圖中黑色陰影部分的面積為________.(結(jié)果保留)2、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.3、如圖,在ABC中,∠C=90°,AB=10,在同一平面內(nèi),點O到點A,B,C的距離均等于a(a為常數(shù)).那么常數(shù)a的值等于________.4、從﹣2,1兩個數(shù)中隨機選取一個數(shù)記為m,再從﹣1,0,2三個數(shù)中隨機選取一個數(shù)記為n,則m、n的取值使得一元二次方程x2﹣mx+n=0有兩個不相等的實數(shù)根的概率是_____.5、如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.6、如圖,把△ABC繞點C順時針旋轉(zhuǎn)某個角度α得到,∠A=30°,∠1=70°,則旋轉(zhuǎn)角α的度數(shù)為_____.7、如圖,在矩形中,,,F(xiàn)為中點,P是線段上一點,設(shè),連結(jié)并將它繞點P順時針旋轉(zhuǎn)90°得到線段,連結(jié)、,則在點P從點B向點C的運動過程中,有下面四個結(jié)論:①當(dāng)時,;②點E到邊的距離為m;③直線一定經(jīng)過點;④的最小值為.其中結(jié)論正確的是______.(填序號即可)三、解答題(7小題,每小題0分,共計0分)1、在一個不透明的盒子中裝有四個只有顏色不同的小球,其中兩個紅球,一個黃球,一個藍球.(1)攪勻后從中任意摸出1個球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個球,用列表法或樹形圖的方法,求兩次都是紅球的概率.2、如圖,的直徑cm,AM和BN是它的切線,DE與相切于點E,并與AM,BN分別相交于D,C兩點.設(shè),,求y關(guān)于x的函數(shù)解析式.3、在太原市創(chuàng)建國家文明城市的過程中,東東和南南積極參加志愿者活動,有下列三個志愿者工作崗位供他們選擇:(每個工作崗位僅能讓一個人工作)①2個清理類崗位:清理花壇衛(wèi)生死角;清理樓道雜物(分別用,表示);②1個宣傳類崗位:垃圾分類知識宣傳(用表示).(1)東東從三個崗位中隨機選取一個報名,恰好選擇清理類崗位的概率為________.(2)若東東和南南各隨機從三個崗位中選取一個報名,請你利用畫樹狀圖法或列表法求出他們恰好都選擇同一類崗位的概率.4、如圖,已知弓形的長,弓高,(,并經(jīng)過圓心O).(1)請利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長.5、如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點B關(guān)于原點對稱的點B′的坐標(biāo):;(2)平移△ABC,使平移后點A的對應(yīng)點A1的坐標(biāo)為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2.6、在平面直角坐標(biāo)系xOy中,給出如下定義:若點P在圖形M上,點Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點,規(guī)定d(M,N)=0.已知:如圖,點A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點,⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.7、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(與A、B不重合),連接CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連接DE、BE(1)求證:△ACD≌△BCE;(2)若BE=5,DE=13,求AB的長-參考答案-一、單選題1、D【分析】根據(jù)隨機事件、必然事件以及不可能事件的定義即可作出判斷.【詳解】解:概率反映的是隨機性的規(guī)律,但每次試驗出現(xiàn)的結(jié)果具有不確定,故選項A、B錯誤;隨機事件發(fā)生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故選項C錯誤;在相同條件下可以通過大量重復(fù)實驗,用一個隨機事件的頻率去估計概率,故選項D正確;故選:D.【點睛】本題考查了隨機事件、必然事件以及不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點數(shù)可能是3或4,利用概率公式計算即可.【詳解】解:一枚質(zhì)地均勻的骰子共有六個面,點數(shù)分別為1,2,3,4,5,6,∴點數(shù)大于2且小于5的有3或4,∴向上一面的點數(shù)大于2且小于5的概率是=,故選:C.【點睛】此題考查了求簡單事件的概率,正確掌握概率的計算公式是解題的關(guān)鍵.3、B【分析】求出正五邊形的一個內(nèi)角的度數(shù),再根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理計算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點睛】本題考查了正多邊形和圓,求出正五邊形的一個內(nèi)角度數(shù)是解決問題的關(guān)鍵.4、C【分析】先根據(jù)圓周角定理求出∠AOB的度數(shù),再由等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內(nèi),把一個圖形繞某點旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關(guān)鍵.6、B【分析】畫出圖形,作,交BE于點D.根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求出AD的長,再由AD和AC的長作比較即可判斷①②;由前面所求的AD的長和AB的長,結(jié)合該三角形外接圓的半徑長,即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點即為C點,為兩點不唯一,可判斷其不符合題意.【詳解】如圖,,,點C在射線上.作,交BE于點D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點C即是.∴,使得BC的長唯一成立,故②符合題意;∵,,∴存在兩個點C使的外接圓的半徑等于4,兩個外接圓圓心分別在AB的上、下兩側(cè),如圖,點C和即為使的外接圓的半徑等于4的點.故③不符合題意.故選B.【點睛】本題考查等腰直角三角形的判定和性質(zhì),勾股定理,三角形外接圓的性質(zhì).利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.7、D【分析】根據(jù)必然事件的概念“在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件”可判斷選項D是必然事件;根據(jù)不可能事件的概念“有些事件必然不會發(fā)生,這樣的事件稱為不可能事件”可判斷選項B是不可能事件;根據(jù)隨機事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件”判斷選項A、C是隨機事件,即可得.【詳解】解:A、剛到車站,恰好有車進站是隨機事件;B、在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容是隨機事件;D、任意畫一個三角形,其外角和是360°是必然事件;故選D.【點睛】本題考查了必然事件,解題的關(guān)鍵是熟記必然事件的概念,不可能事件的概念和隨機事件的概念.8、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.二、填空題1、【分析】過點C作于點H,根據(jù)正弦定義解得CH的長,再由扇形面積公式、三角形的面積公式解題即可.【詳解】解:過點C作于點H,在平行四邊形中,平行四邊形的面積為:,圖中黑色陰影部分的面積為:,故答案為:.【點睛】本題考查平行四邊形的性質(zhì)、扇形面積等知識,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.2、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.3、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可知道點到點A,B,C的距離相等,如下圖:,,故答案是:5.【點睛】本題考查了直角三角形的外接圓的外心,解題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.4、【分析】先畫樹狀圖列出所有等可能結(jié)果,從中找到使方程有兩個不相等的實數(shù)根,即m>n的結(jié)果數(shù),再根據(jù)概率公式求解可得.【詳解】解:畫樹狀圖如下:由樹狀圖知,共有12種等可能結(jié)果,其中能使方程x2-mx+n=0有兩個不相等的實數(shù)根,即m2-4n>0,m2>4n的結(jié)果有4種結(jié)果,∴關(guān)于x的一元二次方程x2-mx+n=0有兩個不相等的實數(shù)根的概率是,故答案為:.【點睛】本題是概率與一元二次方程的根的判別式相結(jié)合的題目.正確理解列舉法求概率的條件以及一元二次方程有根的條件是關(guān)鍵.5、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運用所學(xué)知識解決問題.6、##【分析】由旋轉(zhuǎn)的性質(zhì)可得再利用三角形的外角的性質(zhì)求解從而可得答案.【詳解】解:把△ABC繞點C順時針旋轉(zhuǎn)某個角度α得到,∠A=30°,∠1=70°,故答案為:【點睛】本題考查的是旋轉(zhuǎn)的性質(zhì),三角形的外角的性質(zhì),利用性質(zhì)的性質(zhì)求解是解本題的關(guān)鍵.7、②③④【分析】①當(dāng)在點的右邊時,得出即可判斷;②證明出即可判斷;③根據(jù)為等腰直角三角形,得出都是等腰直角三角形,得到即可判斷;④當(dāng)時,有最小值,計算即可.【詳解】解:,為等腰直角三角形,,當(dāng)在點的左邊時,,當(dāng)在點的右邊時,,故①錯誤;過點作,在和中,根據(jù)旋轉(zhuǎn)的性質(zhì)得:,,,,,故②正確;由①中得知為等腰直角三角形,,也是等腰直角三角形,過點,不管P在上怎么運動,得到都是等腰直角三角形,,即直線一定經(jīng)過點,故③正確;是等腰直角三角形,當(dāng)時,有最小值,,為等腰直角三角形,,,由勾股定理:,,故④正確;故答案是:②③④.【點睛】本題是四邊形綜合題,考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理,等腰直角三角形,解題的關(guān)鍵是靈活運用這些性質(zhì)進行推理.三、解答題1、(1);(2)兩次都是紅球的概率為【分析】(1)根據(jù)列舉法將所有可能列出,然后找出符合條件的可能,計算即可得;(2)四個球簡寫為“紅1,紅2,黃,藍”,利用列表法列出所有出現(xiàn)的可能,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可.(1)解:攪勻后從中任意摸出1個球,有四種可能:紅球、紅球、黃球、藍球,其中是紅球的可能有兩種,∴,其中是黃球的可能有一種,∴,故答案為:;;(2)四個球簡寫為“紅1,紅2,黃,藍”,列表法為:紅1紅2黃藍紅1(紅1,紅1)(紅1,紅2)(紅1,黃)(紅1,藍)紅2(紅2,紅1)(紅2,紅2)(紅2,黃)(紅2,藍)黃(黃,紅1)(黃,紅2)(黃,黃)(黃,藍)藍(藍,紅1)(藍,紅2)(藍,黃)(藍,藍)共有16種等可能的結(jié)果數(shù),其中兩次都是紅球的有4種結(jié)果,所以兩次都是紅球的概率為:.【點睛】題目主要考查利用列表法或樹狀圖法求概率,理解題意,熟練掌握列表法或樹狀圖法是解題關(guān)鍵.2、【分析】連接OC,OD,OE,根據(jù)切線的性質(zhì)得到cm,,,推出,,根據(jù),列得,從而求出函數(shù)解析式.【詳解】解:連接OC,OD,OE,∵AD切于點A,CB切于點B,CD切于點E,直徑cm∴cm,,,∴,,∵,∴∴..【點睛】此題考查了圓的切線的性質(zhì)定理,全等三角形的判定及性質(zhì)定理,求函數(shù)解析式,正確連線利用切線的性質(zhì)是解題的關(guān)鍵.3、(1);(2)【分析】(1)利用概率公式,即可求解;(2)根據(jù)題意畫出樹狀圖,得到共有6種等可能的情況數(shù),其中他們恰好都選擇同一類崗位的有2種,再利用概率公式,即可求解【詳解】解:東東從三個崗位中隨機選取一個報名,恰好選擇清理類崗位的概率為.(2)根據(jù)題意畫圖如下:共有6種等可能的情況數(shù),其中他們恰好都選擇同一類崗位的有2種,則他們恰好都選擇同一類崗位的概率是【點睛】本題主要考查了利用畫樹狀圖法或列表法求概率,熟練掌握隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù);P(必然事件)=1;P(不可能事件)=0是解題的關(guān)鍵.4、(1)見解析(2)10【分析】(1)作BC的垂直平分線,與直線CD的交點即為圓心;(2)連接OA,根據(jù)勾股定理列出方程即可求解.(1)解:如圖所示,點O即是圓心;(2)解:連接OA,∵,并經(jīng)過圓心O,,∴,∵,∴解得,,答:半徑為10.【點睛】本題考查了垂徑定理和確定圓心,解題關(guān)鍵是熟練作圖確定圓心,利用垂徑定理和勾股定理求半徑.5、(1)(4,﹣1);(2)見解析;(3)見解析.【分析】(1)根據(jù)關(guān)于原點對稱的兩點的橫縱坐標(biāo)均與原來點的橫縱坐標(biāo)互為相反數(shù),據(jù)此可得答案;(2)將三個點分別向右平移3個單位、再向上平移1個單位,繼而首尾順次連接即可;(3)將三個點分別繞原點O逆時針旋轉(zhuǎn)90°后得到對應(yīng)點,再首尾順次連接即可.【詳解】(1)點B關(guān)于原點對稱的點B′的坐標(biāo)為(4,﹣1),故答案為:(4,﹣1);(2)如圖所示,△A1B1C1即為所求.(3)如圖所示,△A2B2C2即為所求.【點睛】本題主要考查作圖—平移變換、旋轉(zhuǎn)變換,解題的關(guān)鍵是掌握平移變換和旋轉(zhuǎn)變換的定義與性質(zhì),并據(jù)此得出變換后的對應(yīng)點.6、(1)0,;(2);(3)【分析】(1)根據(jù)新定義,即可求解;(2)過點O作OD⊥AB于點D,根據(jù)三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當(dāng)⊙O的半徑等于OD時最小,當(dāng)⊙O的半徑等于OB時最大,即可求解;(3)過點C作CN⊥AB于點N,利用銳角三角函數(shù),可得∠OAB=60°,然后分三種情況:當(dāng)點C在點A的右側(cè)時,當(dāng)點C與點A重合時,當(dāng)點C在點A的左側(cè)時,即可求解.【詳解】解:(1)∵⊙O的半徑為2,A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 漢字的六種結(jié)構(gòu)方式
- 2025-2026年北京市中考英語綜合提高練習(xí)試卷4
- 高端消費品市場需求研究
- 2025年國際勞動合同范本下載
- 水質(zhì)標(biāo)準(zhǔn)基本知識培訓(xùn)課件
- 酒店網(wǎng)絡(luò)安全方案
- 智算中心虛擬化平臺部署與管理方案
- 混凝土運輸途中振動控制方案
- 輸電線路隱患排查與整改方案
- 建筑工程施工中污染控制與治理方案
- 員工應(yīng)聘登記表(齊全版)
- 手術(shù)室停電停水應(yīng)急預(yù)案
- 人教版初中八年級數(shù)學(xué)上冊《第十一章 三角形》大單元整體教學(xué)設(shè)計
- 《高級統(tǒng)計實務(wù)和案例分析》和考試大綱
- 韋萊韜悅-東方明珠新媒體集團一體化職位職級體系方案-2018
- 2024新版(外研版三起孫有中)三年級英語上冊單詞帶音標(biāo)
- 注塑缺陷的原因分析與解決對策培訓(xùn)教程
- 中歐班列課件
- 2025年九省聯(lián)考新高考 物理試卷(含答案解析)
- 口腔頜面外科消毒和滅菌-手術(shù)區(qū)的消毒消毒巾鋪置法(口腔科技術(shù))
- 醫(yī)院標(biāo)識標(biāo)牌采購?fù)稑?biāo)方案(技術(shù)方案)
評論
0/150
提交評論