黑龍江護理高等??茖W(xué)?!对O(shè)計素描》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
黑龍江護理高等??茖W(xué)校《設(shè)計素描》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
黑龍江護理高等??茖W(xué)?!对O(shè)計素描》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
黑龍江護理高等??茖W(xué)?!对O(shè)計素描》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
黑龍江護理高等??茖W(xué)校《設(shè)計素描》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共2頁黑龍江護理高等??茖W(xué)?!对O(shè)計素描》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細(xì)節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對抗網(wǎng)絡(luò)(GAN)D.自動編碼器(Autoencoder)2、計算機視覺中的顯著性檢測旨在找出圖像中引人注目的區(qū)域。假設(shè)要在一張復(fù)雜的自然風(fēng)景圖像中檢測顯著性區(qū)域,以下關(guān)于顯著性檢測方法的描述,哪一項是不正確的?()A.基于對比度的方法通過計算圖像區(qū)域與周圍區(qū)域的差異來確定顯著性B.基于頻域分析的方法可以從圖像的頻譜中提取顯著性信息C.深度學(xué)習(xí)方法能夠?qū)W習(xí)圖像的全局和局部特征,實現(xiàn)更準(zhǔn)確的顯著性檢測D.顯著性檢測的結(jié)果總是與人類的視覺注意力機制完全一致,沒有偏差3、在計算機視覺的目標(biāo)識別任務(wù)中,假設(shè)目標(biāo)物體被部分遮擋,以下哪種模型架構(gòu)可能更有助于恢復(fù)被遮擋部分的信息?()A.多層感知機(MLP)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.注意力機制(AttentionMechanism)4、計算機視覺中的目標(biāo)計數(shù)任務(wù),例如統(tǒng)計圖像中物體的數(shù)量。假設(shè)要計算一張果園圖片中蘋果的數(shù)量,以下關(guān)于目標(biāo)計數(shù)方法的描述,正確的是:()A.基于傳統(tǒng)的圖像分割和對象識別方法可以準(zhǔn)確快速地完成目標(biāo)計數(shù)B.深度學(xué)習(xí)中的回歸模型不適合用于目標(biāo)計數(shù)任務(wù)C.目標(biāo)的大小、形狀和分布對計數(shù)結(jié)果沒有影響D.結(jié)合深度學(xué)習(xí)的密度估計方法能夠有效地實現(xiàn)目標(biāo)計數(shù)5、計算機視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下哪種圖像采集設(shè)備可能提供更高的分辨率和精度?()A.普通數(shù)碼相機B.工業(yè)線陣相機C.手機攝像頭D.監(jiān)控攝像頭6、目標(biāo)檢測是計算機視覺中的重要任務(wù)之一,旨在定位和識別圖像中的多個目標(biāo)。假設(shè)我們要在城市街道的圖像中檢測行人和車輛。對于處理這種復(fù)雜場景的目標(biāo)檢測任務(wù),以下哪種技術(shù)通常能提供更準(zhǔn)確的檢測結(jié)果?()A.基于滑動窗口的傳統(tǒng)目標(biāo)檢測方法B.基于區(qū)域提議的目標(biāo)檢測算法,如R-CNN系列C.基于回歸的一階段目標(biāo)檢測算法,如YOLO系列D.基于聚類的目標(biāo)檢測方法7、在進行計算機視覺的三維重建時,需要從多個視角的圖像中恢復(fù)物體的三維形狀和結(jié)構(gòu)。假設(shè)要對一個復(fù)雜的古建筑進行三維重建,圖像采集存在視角偏差和部分遮擋。以下哪種三維重建方法在處理這種不完整和有噪聲的數(shù)據(jù)時效果較好?()A.基于立體視覺的重建B.基于運動恢復(fù)結(jié)構(gòu)(SfM)的重建C.基于激光掃描的重建D.基于深度學(xué)習(xí)的重建8、在計算機視覺中,人臉檢測和識別是重要的應(yīng)用方向。以下關(guān)于人臉檢測和識別的說法,不正確的是()A.人臉檢測旨在確定圖像或視頻中是否存在人臉,并定位人臉的位置B.人臉識別是在檢測到人臉的基礎(chǔ)上,對人臉的身份進行識別和驗證C.深度學(xué)習(xí)方法在人臉檢測和識別中取得了巨大的成功,但仍然存在一些挑戰(zhàn),如光照變化和姿態(tài)變化D.人臉檢測和識別技術(shù)已經(jīng)非常成熟,不存在任何錯誤率和安全隱患9、計算機視覺在安防監(jiān)控領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一個商場需要通過監(jiān)控攝像頭進行人員異常行為檢測。以下關(guān)于安防監(jiān)控中的計算機視覺的描述,哪一項是不正確的?()A.可以實時監(jiān)測人群的流動情況,發(fā)現(xiàn)擁堵和異常聚集B.能夠識別人員的打斗、摔倒等異常行為,并及時發(fā)出警報C.計算機視覺系統(tǒng)能夠完全取代人工監(jiān)控,不需要人類保安的參與D.可以與其他安防設(shè)備(如門禁系統(tǒng))聯(lián)動,提高安防水平10、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細(xì)節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進行任何去噪處理,保留原始噪聲圖像11、在計算機視覺的應(yīng)用于工業(yè)檢測中,需要檢測產(chǎn)品表面的缺陷和瑕疵。假設(shè)我們要檢測手機屏幕上的劃痕和亮點,以下哪種方法能夠?qū)崿F(xiàn)快速、準(zhǔn)確的缺陷檢測,并且適應(yīng)不同的產(chǎn)品批次和生產(chǎn)環(huán)境?()A.基于機器視覺的傳統(tǒng)檢測方法,結(jié)合閾值和形態(tài)學(xué)操作B.基于深度學(xué)習(xí)的目標(biāo)檢測算法,針對缺陷進行訓(xùn)練C.基于紋理分析和模式識別的方法D.基于光學(xué)原理和物理模型的檢測方法12、計算機視覺在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助實現(xiàn)精準(zhǔn)農(nóng)業(yè)。假設(shè)一個農(nóng)場需要通過計算機視覺監(jiān)測農(nóng)作物的生長狀況。以下關(guān)于計算機視覺在農(nóng)業(yè)中的描述,哪一項是錯誤的?()A.可以檢測農(nóng)作物的病蟲害,及時采取防治措施B.能夠評估農(nóng)作物的生長階段和成熟度,指導(dǎo)收獲時間C.計算機視覺在農(nóng)業(yè)中的應(yīng)用完全不受天氣和光照條件的影響D.可以通過無人機搭載攝像頭進行大面積的農(nóng)田監(jiān)測13、在計算機視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對一組包含不同視角和縮放比例的物體圖像進行匹配,SIFT特征的哪個特性使其在這種情況下表現(xiàn)出色?()A.對旋轉(zhuǎn)和尺度變化具有不變性B.計算速度快,效率高C.特征維度低,易于存儲和處理D.對光照變化不敏感14、計算機視覺在無人駕駛飛行器(UAV)中的應(yīng)用可以輔助飛行和導(dǎo)航。假設(shè)一架UAV需要依靠視覺信息避開障礙物,以下關(guān)于UAV計算機視覺應(yīng)用的描述,正確的是:()A.僅依靠單目視覺就能準(zhǔn)確估計障礙物的距離和速度B.視覺信息在UAV飛行中的作用有限,主要依靠其他傳感器如GPSC.多目視覺和深度學(xué)習(xí)算法的結(jié)合可以為UAV提供更準(zhǔn)確的環(huán)境感知和障礙物避讓能力D.UAV的飛行速度和姿態(tài)對視覺系統(tǒng)的性能沒有影響15、計算機視覺在安防監(jiān)控領(lǐng)域有廣泛應(yīng)用。假設(shè)要通過監(jiān)控攝像頭實時檢測人群中的異常行為,以下關(guān)于實時性和準(zhǔn)確性的平衡,哪一項是最為關(guān)鍵的?()A.優(yōu)先保證實時性,即使準(zhǔn)確性略有降低B.優(yōu)先保證準(zhǔn)確性,允許一定的延遲C.不考慮實時性和準(zhǔn)確性,只要能檢測出異常行為即可D.完全無法平衡實時性和準(zhǔn)確性,只能根據(jù)具體情況選擇其一16、計算機視覺中的圖像增強技術(shù)可以改善圖像質(zhì)量。假設(shè)要對一張低光照條件下拍攝的圖像進行增強,以下關(guān)于圖像增強方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強圖像對比度C.基于深度學(xué)習(xí)的圖像增強方法能夠自適應(yīng)地學(xué)習(xí)到適合的增強策略D.圖像增強不會改變圖像的原始信息和內(nèi)容17、在計算機視覺的姿態(tài)估計任務(wù)中,假設(shè)要估計一個物體在三維空間中的姿態(tài),例如估計一個機器人手臂的關(guān)節(jié)角度。以下哪種技術(shù)或方法可能被用于實現(xiàn)這一目標(biāo)?()A.基于立體視覺的方法,通過多個相機的觀測B.利用深度學(xué)習(xí)模型直接預(yù)測姿態(tài)參數(shù)C.僅根據(jù)物體的外觀形狀進行估計D.隨機猜測物體的姿態(tài)18、在計算機視覺的目標(biāo)識別任務(wù)中,除了識別目標(biāo)的類別,還需要確定目標(biāo)的位置和大小。假設(shè)我們要在一幅復(fù)雜的圖像中識別多個不同大小的物體,以下哪種目標(biāo)識別算法能夠適應(yīng)不同尺度的目標(biāo)?()A.基于滑動窗口的目標(biāo)識別算法B.基于特征金字塔的目標(biāo)識別算法C.基于注意力機制的目標(biāo)識別算法D.基于模板匹配的目標(biāo)識別算法19、計算機視覺中的無人駕駛技術(shù)是一個綜合性的應(yīng)用領(lǐng)域。以下關(guān)于無人駕駛中的計算機視覺的說法,不正確的是()A.計算機視覺在無人駕駛中用于環(huán)境感知、目標(biāo)檢測、路徑規(guī)劃和障礙物避讓等任務(wù)B.深度學(xué)習(xí)方法能夠?qū)崟r準(zhǔn)確地識別道路標(biāo)志、車輛和行人等物體C.無人駕駛中的計算機視覺系統(tǒng)已經(jīng)非常成熟,能夠應(yīng)對各種復(fù)雜的交通場景D.惡劣天氣條件和光照變化等因素仍然是無人駕駛中計算機視覺面臨的挑戰(zhàn)20、在計算機視覺的場景理解任務(wù)中,假設(shè)要理解一個室內(nèi)場景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項是不太恰當(dāng)?shù)??()A.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動學(xué)習(xí)場景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場景理解模型二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋計算機視覺中的圖像配準(zhǔn)的含義。2、(本題5分)簡述圖像的顯著性檢測的目的。3、(本題5分)簡述圖像的色彩調(diào)整軟件。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某科技公司的產(chǎn)品手冊設(shè)計,討論其在信息傳達、視覺效果、用戶體驗方面的優(yōu)點和不足,以及如何進行改進。2、(本題5分)以麥當(dāng)勞的早餐廣告為例,分析其如何通過視覺元素吸引消費者在早晨選擇麥當(dāng)勞的產(chǎn)品。討論品牌標(biāo)志、色彩和食品造型的作用。3、(本題5分)剖析某烘焙工作室的品牌標(biāo)識和產(chǎn)品包裝設(shè)計,探討如何通過獨特的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論