難點詳解山東省龍口市中考數(shù)學真題分類(勾股定理)匯編單元測試試題(含詳解)_第1頁
難點詳解山東省龍口市中考數(shù)學真題分類(勾股定理)匯編單元測試試題(含詳解)_第2頁
難點詳解山東省龍口市中考數(shù)學真題分類(勾股定理)匯編單元測試試題(含詳解)_第3頁
難點詳解山東省龍口市中考數(shù)學真題分類(勾股定理)匯編單元測試試題(含詳解)_第4頁
難點詳解山東省龍口市中考數(shù)學真題分類(勾股定理)匯編單元測試試題(含詳解)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省龍口市中考數(shù)學真題分類(勾股定理)匯編單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖所示的網(wǎng)格是正方形網(wǎng)格,A,B,C,D是網(wǎng)格線交點,則與的大小關(guān)系為(

)A. B. C. D.無法確定2、若a,b為直角三角形的兩直角邊,c為斜邊,下列選項中不能用來證明勾股定理的是(

)A. B.C. D.3、如圖,將直角三角形紙片沿AD折疊,使點B落在AC延長線上的點E處.若AC=3,BC=4,則圖中陰影部分的面積是()A. B. C. D.4、如圖,嘉嘉在A時測得一棵4米高的樹的影長為,若A時和B時兩次日照的光線互相垂直,則B時的影長為(

)A. B. C. D.5、如圖,在△ABC中,∠BAC=90°,BC=5,以AB,AC為邊作正方形,這兩個正方形的面積和為(

)A.5 B.9 C.16 D.256、如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當∠DEB是直角時,DF的長為(

).A.5 B.3 C. D.7、如圖,正方體盒子的棱長為2,M為BC的中點,則一只螞蟻從A點沿盒子的表面爬行到M點的最短距離為(

)A. B.C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、云頂滑雪公園是北京2022年冬奧會7個雪上競賽場館中唯一利用現(xiàn)有雪場改造而成的.下圖左右兩幅圖分別是公園內(nèi)云頂滑雪場U型池的實景圖和示意圖,該場地可以看作是從一個長方體中挖去了半個圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點E在上,.一名滑雪愛好者從點A滑到點E,他滑行的最短路線長為_________m.2、《九章算術(shù)》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個池塘,其底面是邊長為10尺的正方形,一棵蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長_____尺.3、如圖,某農(nóng)舍的大門是一個木制的長方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對的頂點間用一塊木板加固,則木板的長為________.4、如圖,在的網(wǎng)格中每個小正方形的邊長都為1,的頂點、、都在格點上,點為邊的中點,則線段的長為________.5、已知,在中,,,,則的面積為__.6、把一根長12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.7、如圖,學校有一塊長方形草坪,有極少數(shù)人為了避開拐角走“捷徑”,在草坪內(nèi)走出了一條“路”,他們僅僅少走了________步路(假設(shè)步為米),卻踩傷了花草.8、《九章算術(shù)》中記載著這樣一個問題:已知甲、乙兩人同時從同一地點出發(fā),甲的速度為7步/分,乙的速度為3步/分,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇,那么相遇時,甲、乙各走了多遠?解:如圖,設(shè)甲乙兩人出發(fā)后x分鐘相遇.根據(jù)勾股定理可列得方程為______.三、解答題(7小題,每小題10分,共計70分)1、拖拉機行駛過程中會對周圍產(chǎn)生較大的噪聲影響.如圖,有一臺拖拉機沿公路AB由點A向點B行駛,已知點C為一所學校,且點C與直線AB上兩點A,B的距離分別為150m和200m,又AB=250m,拖拉機周圍130m以內(nèi)為受噪聲影響區(qū)域.(1)學校C會受噪聲影響嗎?為什么?(2)若拖拉機的行駛速度為每分鐘50米,拖拉機噪聲影響該學校持續(xù)的時間有多少分鐘?2、如圖所示,在中,,,,為邊上的中點.(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.3、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點,且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說明理由;(2)求△ABC的周長.4、如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長均為1.(1)請在所給網(wǎng)格中畫一個邊長分別為,,的三角形;(2)此三角形的面積是.5、如圖,中,,,是邊上一點,且,若.求的長.6、勾股定理是人類最偉大的十個科學發(fā)現(xiàn)之一,在《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,漢代數(shù)學家趙爽為證明勾股定理創(chuàng)制的“趙爽弦圖”也流傳至今.迄今為止已有多種證明勾股定理的方法.下面是數(shù)學課上創(chuàng)新小組驗證過程的一部分.請認真閱讀并根據(jù)他們的思路將后續(xù)的過程補充完整:將兩張全等的直角三角形紙片按圖所示擺放,其中,點在線段上,點在邊兩側(cè),試證明:.7、如圖,高速公路上有A,B兩點相距10km,C,D為兩村莊,已知DA=4km,CB=6km,DA⊥AB于點A,CB⊥AB于B,現(xiàn)要在AB上建一個服務(wù)站E,使得C,D兩村莊到E站的距離相等,求BE的長.-參考答案-一、單選題1、C【解析】【分析】根據(jù)每個小網(wǎng)格都為正方形,設(shè)每個網(wǎng)格為1,由勾股定理可以求出AD、AC、CD的長,再由勾股定理的逆定理得到△ACD為等腰直角三角形,同理可得△ABC為等腰直角三角形,即∠BAC=∠DAC.【詳解】解:如圖,設(shè)正方形每個網(wǎng)格的邊長都為1,連接CD、BC,則,,,,為等腰直角三角形,,同理:,,,,為等腰直角三角形,,.故選:C.【考點】本題考查勾股定理的性質(zhì)、勾股定理的逆定理以及等腰直角三角形的判定,解本題的關(guān)鍵要掌握勾股定理及逆定理的基本知識.2、A【解析】【分析】由題意根據(jù)圖形的面積得出的關(guān)系,即可證明勾股定理,分別分析即可得出答案【詳解】解:A、不能利用圖形面積證明勾股定理;B、根據(jù)面積得到;C、根據(jù)面積得到,整理得;D、根據(jù)面積得到,整理得.故選:A.【考點】本題考查勾股定理的證明,熟練掌握利用圖形的面積得出的關(guān)系,即可證明勾股定理.3、B【解析】【分析】由勾股定理求出AB,設(shè)CD=x,則BD=4-x,根據(jù)求出x得到CD的長,利用面積求出答案.【詳解】解:∵∠ACB=90°,∴,由折疊得AE=AB=5,DE=BD,設(shè)CD=x,則BD=4-x,在△DCE中,∠DCE=90°,CE=AE-AC=5-3=2,∵,∴,解得x=1.5,∴CD=1.5,∴圖中陰影部分的面積是,故選:B.【考點】此題考查了折疊的性質(zhì),勾股定理,熟記勾股定理的計算公式是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)勾股定理,求出FC=,令DE=x,在Rt中,EC2=,在Rt中,EC2==,代入求解即可.【詳解】解:由題意,得∠ECF=∠CDF=∠CDE=90°,CD=4m,=,由勾股定理,得FC=,EC2=,EC2=,∴=,令DE=x,則EF=x+8,∴,整理,得16x=32,解得x=2.故選:A.【考點】本題考查利用勾股定理求線段長,拓展一元一次方程,正確的運算能力是解決問題的關(guān)鍵.5、D【解析】【分析】設(shè),根據(jù)勾股定理可得,即可求解.【詳解】解:設(shè),根據(jù)勾股定理可得,即兩個正方形的面積和為25故選:D【考點】本題考查了勾股定理,掌握勾股定理是解題的關(guān)鍵.6、C【解析】【分析】如圖,由題意知,,,,可知三點共線,與重合,在中,由勾股定理得,求的值,設(shè),,在中,由勾股定理得,計算求解即可.【詳解】解:如圖,∵是直角∴由題意知,,∴∴三點共線∴與重合在中,由勾股定理得設(shè),在中,由勾股定理得即解得∴的長為故選C.【考點】本題考查了折疊的性質(zhì),勾股定理等知識.解題的關(guān)鍵在于明確三點共線,與重合.7、B【解析】【分析】先利用展開圖確定最短路線,再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線AM爬行時距離最短;∵正方體盒子棱長為2,M為BC的中點,∴,∴,故選:B.【考點】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質(zhì)、正方體的展開圖、勾股定理、兩點之間線段最短等知識,解題關(guān)鍵是牢記相關(guān)概念與靈活應(yīng)用.二、填空題1、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長.在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長.【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長.在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點】本題考查了平面展開﹣最短路徑問題,解決本題的關(guān)鍵是掌握圓柱的側(cè)面展開圖是矩形,利用勾股定理求最短距離.2、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長13尺,故答案為:13【考點】本題考查勾股定理,和列方程解決實際問題,能夠在實際問題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.3、2.5m【解析】【詳解】設(shè)木棒的長為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長為2.5m.故答案為2.5m.4、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點O為AB邊的中點,∴CO=AB=2.5,故答案為:2.5.【考點】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識,熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.5、2或14#14或2【解析】【分析】過點B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.6、直角三角形【解析】【分析】首先計算出第三條鐵絲的長度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.7、【解析】【分析】少走的距離是AC+BC-AB,在直角△ABC中根據(jù)勾股定理求得AB的長即可.【詳解】解:如圖,∵在中,,∴米,則少走的距離為:米,∵步為米,∴少走了步.故答案為:.【考點】本題考查正確運用勾股定理.善于觀察題目的信息,掌握勾股定理是解題的關(guān)鍵.8、【解析】【分析】設(shè)甲、乙二人出發(fā)后相遇的時間為x,然后利用勾股定理列出方程即可.【詳解】解:設(shè)經(jīng)x秒二人在C處相遇,這時乙共行AC=3x,甲共行AB+BC=7x,∵AB=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=(3x)2+102,故答案是:(7x-10)2=(3x)2+102.【考點】本題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是從實際問題中抽象出直角三角形.三、解答題1、(1)會受噪聲影響,理由見解析;(2)有2分鐘;【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而利用三角形面積得出CD的長,進而得出學校C是否會受噪聲影響;(2)利用勾股定理得出ED以及EF的長,進而得出拖拉機噪聲影響該學校持續(xù)的時間.【詳解】解:(1)學校C會受噪聲影響.理由:如圖,過點C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉機周圍130m以內(nèi)為受噪聲影響區(qū)域,∴學校C會受噪聲影響.(2)當EC=130m,F(xiàn)C=130m時,正好影響C學校,∵ED==50(m),∴EF=50×2=100(m),∵拖拉機的行駛速度為每分鐘50米,∴100÷50=2(分鐘),即拖拉機噪聲影響該學校持續(xù)的時間有2分鐘.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.2、(1)BD=2,;(2),【解析】【分析】(1)由勾股定理求出BC=4,再根據(jù)中點的性質(zhì)可得到BD,然后再一次運用勾股定理求出AD即可;(2)設(shè),則,,利用勾股定理列出方程解,從而得解.【詳解】(1)∵在中,,,∴在中,∴又∵為邊上的中點∴∴在中,∴(2)折疊后如圖所示,為折痕,聯(lián)結(jié)設(shè),則,在中,,即解得:∴∴【考點】本題主要考查了勾股定理的應(yīng)用,也考查了折疊的性質(zhì).是常見中考題型.3、(1)△BDC為直角三角形,理由見解析;(2)△ABC的周長為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長,周長即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設(shè)AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△ABC的周長=2AB+BC=(cm).【考點】本題考查了勾股定理的逆定理,關(guān)鍵是根據(jù)等腰三角形的性質(zhì)、勾股定理以及逆定理的應(yīng)用解答.4、(1)畫圖見解析;(2)【解析】【分析】(1)利用勾股定理在網(wǎng)格中確定再順次連接即可;(2)利用長方形的面積減去周圍三個三角形的面積即可.【詳解】解:(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論