




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、直角三角形的兩條直角邊分別為5和12,那么這個(gè)三角形的斜邊上的中線長(zhǎng)為()A.6 B.6.5 C.10 D.132、如圖,四邊形ABCD為平行四邊形,延長(zhǎng)AD到E,使DE=AD,連接EB,EC,DB,添加一個(gè)條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE3、四邊形四條邊長(zhǎng)分別是a,b,c,d,其中a,b為對(duì)邊,且滿足,則這個(gè)四邊形是()A.任意四邊形 B.平行四邊形 C.對(duì)角線相等的四邊形 D.對(duì)角線垂直的四邊形4、若一個(gè)直角三角形的周長(zhǎng)為,斜邊上的中線長(zhǎng)為1,則此直角三角形的面積為()A. B. C. D.5、如圖,已知在正方形ABCD中,厘米,,點(diǎn)E在邊AB上,且厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上以a厘米/秒的速度由C點(diǎn)向D點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.若存在a與t的值,使與全等時(shí),則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、正方形ABCD的邊長(zhǎng)為4,則圖中陰影部分的面積為_____.2、如圖,點(diǎn)E,F(xiàn)在正方形ABCD的對(duì)角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.3、如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=6,∠DAC=60°,點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng),連接DF,以DF為邊作等邊三角形DFE,點(diǎn)E和點(diǎn)A分別位于DF兩側(cè),下列結(jié)論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點(diǎn)E運(yùn)動(dòng)的路程是2,其中正確結(jié)論的序號(hào)為_____.4、正方形的對(duì)角線長(zhǎng)為cm,則它的周長(zhǎng)為__________cm.5、如圖,矩形ABCD中,AC、BD相交于點(diǎn)O且AC=12,如果∠AOD=60°,則DC=__.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在平行四邊形中,,..點(diǎn)在上由點(diǎn)向點(diǎn)出發(fā),速度為每秒;點(diǎn)在邊上,同時(shí)由點(diǎn)向點(diǎn)運(yùn)動(dòng),速度為每秒.當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng).連接,設(shè)運(yùn)動(dòng)時(shí)間為秒.(1)當(dāng)為何值時(shí),四邊形為平行四邊形?(2)設(shè)四邊形的面積為,求與之間的函數(shù)關(guān)系式.(3)當(dāng)為何值時(shí),四邊形的面積是四邊形的面積的四分之三?求出此時(shí)的度數(shù).(4)連接,是否存在某一時(shí)刻,使為等腰三角形?若存在,請(qǐng)求出此刻的值;若不存在,請(qǐng)說明理由.2、如圖,的對(duì)角線與相交于點(diǎn)O,過點(diǎn)B作BPAC,過點(diǎn)C作CPBD,與相交于點(diǎn)P.
(1)試判斷四邊形的形狀,并說明理由;(2)若將改為矩形,且,其他條件不變,求四邊形的面積;(3)要得到矩形,應(yīng)滿足的條件是_________(填上一個(gè)即可).3、如圖,在平行四邊形ABCD中,,點(diǎn)E、F分別是BC、AD的中點(diǎn).(1)求證:;(2)當(dāng)時(shí),在不添加輔助線的情況下,直接寫出圖中等于的2倍的所有角.4、如圖,在平行四邊形中,連接.(1)請(qǐng)用尺規(guī)完成基本作圖:在上方作,使,射線交于點(diǎn)F,在線段上截取,使.(2)連接,求證:四邊形是菱形.5、如圖,將直角三角形分割成一個(gè)正方形和兩對(duì)全等的直角三角形,在Rt△ABC中,∠ACB=90°,四邊形FCEO是正方形,Rt△AOF≌Rt△AOD,Rt△BOE≌Rt△BOD.若設(shè)正方形的邊長(zhǎng)為x,則可以探究x與直角三角形ABC的三邊a,b,c之間的關(guān)系.探究:∵Rt△BOE≌Rt△BOD,∴BD=BE=a﹣x,∵Rt△AOF≌Rt△AOD,∴AD=AF=b﹣x,∵AB=BD+AD,∴a﹣x+b﹣x=c,∴x=.(1)小穎同學(xué)發(fā)現(xiàn)利用S△ABC=S△AOB+S△AOC+S△BOC也可以探究正方形的邊長(zhǎng)x與直角三角形ABC的三邊a,b,c之間的關(guān)系.請(qǐng)你根據(jù)小穎的思路,完成她的探究過程.(2)請(qǐng)你結(jié)合探究和小穎的解答過程驗(yàn)證勾股定理.
-參考答案-一、單選題1、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長(zhǎng),再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長(zhǎng)為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長(zhǎng)==6.5.故選:B.【點(diǎn)睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.2、B【解析】【分析】先證明四邊形BCED為平行四邊形,再根據(jù)矩形的判定進(jìn)行解答.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE為矩形,故本選項(xiàng)不符合題意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四邊形DBCE不能為矩形,故本選項(xiàng)符合題意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意.故選:B.【點(diǎn)睛】本題考查了平行四邊形的判定和性質(zhì)、矩形的判定等知識(shí),判定四邊形BCED為平行四邊形是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關(guān)系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長(zhǎng)分別是a,b,c,d,其中a,b為對(duì)邊,∴c、d是對(duì)邊,∴該四邊形是平行四邊形,故選:B.【點(diǎn)睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個(gè)直角三角形的周長(zhǎng)為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點(diǎn)睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識(shí)點(diǎn)的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學(xué)習(xí)應(yīng)用.5、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進(jìn)行求解即可.【詳解】解:當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運(yùn)動(dòng)時(shí)間t=4÷2=2(秒);當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間t=(秒).綜上t的值為2.5或2.故選:D.【點(diǎn)睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問題的關(guān)鍵是掌握正方形的四條邊都相等,四個(gè)角都是直角;兩邊及其夾角分別對(duì)應(yīng)相等的兩個(gè)三角形全等.同時(shí)要注意分類思想的運(yùn)用.二、填空題1、8【解析】【分析】正方形的對(duì)角線是它的一條對(duì)稱軸,對(duì)應(yīng)點(diǎn)到兩邊的都是垂直的,距離也都相等,左邊梯形面積和右邊梯形面積相等,所以圖中陰影部分的面積正好為正方形面積的一半.然后列式進(jìn)行計(jì)算即可得解.【詳解】解:由圖形可得:S=×4×4=8,所以陰影部分的面積為8.故答案是:8.【點(diǎn)睛】本題考查正方形的性質(zhì),軸對(duì)稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會(huì)于轉(zhuǎn)化的思想思考問題.2、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對(duì)角線相等且互相垂直平分是解題的關(guān)鍵.3、①②③④【解析】【分析】①根據(jù)∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結(jié)論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結(jié)論②正確;③通過等量代換即可得出結(jié)論③正確;④延長(zhǎng)OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng)時(shí),點(diǎn)E從點(diǎn)O沿線段運(yùn)動(dòng)到,從而得出結(jié)論④正確;【詳解】解:①設(shè)與的交點(diǎn)為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結(jié)論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結(jié)論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結(jié)論③正確;④如圖,延長(zhǎng)OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng)時(shí),點(diǎn)E從點(diǎn)O沿線段運(yùn)動(dòng)到,∵∴設(shè),則∴在中,即解得:∴=OD=AD=,∴點(diǎn)E運(yùn)動(dòng)的路程是,故結(jié)論④正確;故答案為:①②③④.【點(diǎn)睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質(zhì),相似三角形的判定及性質(zhì),全等三角形的性質(zhì)及判定,三角函數(shù)的比值關(guān)系,矩形的性質(zhì)等知識(shí)點(diǎn),熟悉掌握幾何圖形的性質(zhì)合理做出輔助線是解題的關(guān)鍵.4、16【解析】【分析】根據(jù)正方形對(duì)角線的長(zhǎng),可將正方形的邊長(zhǎng)求出,進(jìn)而可將正方形的周長(zhǎng)求出.【詳解】解:設(shè)正方形的邊長(zhǎng)為x,∵正方形的對(duì)角線長(zhǎng)為cm,∴,解得:x=4,∴正方形的邊長(zhǎng)為:4(cm),∴正方形的周長(zhǎng)為4×4=16(cm).故答案為:16.【點(diǎn)睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).5、【解析】【分析】根據(jù)矩形的對(duì)角線互相平分且相等可得OA=OD,然后判斷出△AOD是等邊三角形,再根據(jù)勾股定理解答即可.【詳解】解:∵四邊形ABCD是矩形,∴OA=OD=AC=×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等邊三角形,∴AD=OA=6,∴.故答案為:.【點(diǎn)睛】本題考查了矩形的性質(zhì)和勾股定理以及等邊三角形的判定,解題關(guān)鍵是根據(jù)矩形的性質(zhì)得出△AOD是等邊三角形.三、解答題1、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當(dāng)t=4或
或時(shí),為等腰三角形,理由見解析.【分析】(1)利用平行四邊形的對(duì)邊相等AQ=BP建立方程求解即可;
(2)先構(gòu)造直角三角形,求出AE,再用梯形的面積公式即可得出結(jié)論;
(3)利用面積關(guān)系求出t,即可求出DQ,進(jìn)而判斷出DQ=PQ,即可得出結(jié)論;
(4)分三種情況,利用等腰三角形的性質(zhì),兩腰相等建立方程求解即可得出結(jié)論.【詳解】解:(1)∵在平行四邊形中,,,由運(yùn)動(dòng)知,AQ=16?t,BP=2t,
∵四邊形ABPQ為平行四邊形,
∴AQ=BP,
∴16?t=2t
∴t=,
即:t=s時(shí),四邊形ABPQ是平行四邊形;(2)過點(diǎn)A作AE⊥BC于E,如圖,在Rt△ABE中,∠B=30°,AB=8,
∴AE=4,
由運(yùn)動(dòng)知,BP=2t,DQ=t,
∵四邊形ABCD是平行四邊形,
∴AD=BC=16,
∴AQ=16?t,
∴y=S四邊形ABPQ=(BP+AQ)?AE=(2t+16?t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,
∵BC=16,
∴S四邊形ABCD=16×4=64,
由(2)知,y=S四邊形ABPQ=2t+32(0<t≤8),
∵四邊形ABPQ的面積是四邊形ABCD的面積的四分之三
∴2t+32=×64,
∴t=8;
如圖,當(dāng)t=8時(shí),點(diǎn)P和點(diǎn)C重合,DQ=8,
∵CD=AB=8,
∴DP=DQ,
∴∠DQC=∠DPQ,
∴∠D=∠B=30°,
∴∠DQP=75°;(4)①當(dāng)AB=BP時(shí),BP=8,
即2t=8,t=4;
②當(dāng)AP=BP時(shí),如圖,∵∠B=30°,
過P作PM垂直于AB,垂足為點(diǎn)M,
∴BM=4,,解得:BP=,
∴2t=,
∴t=
③當(dāng)AB=AP時(shí),同(2)的方法得,BP=,
∴2t=,
∴t=
所以,當(dāng)t=4或或時(shí),△ABP為等腰三角形.【點(diǎn)睛】此題是四邊形綜合題,主要考查了平行四邊形的性質(zhì),含30°的直角三角形的性質(zhì),等腰三角形的性質(zhì),解(1)的關(guān)鍵是利用AQ=BP建立方程,解(2)的關(guān)鍵是求出梯形的高,解(3)的關(guān)鍵是求出t,解(4)的關(guān)鍵是分類討論的思想思考問題.2、(1)平行四邊形,理由見解析;(2)四邊形的面積為24;(3)AB=BC或AC⊥BD等(答案不唯一)【分析】(1)利用平行四邊形的判定:兩組對(duì)邊分別平行的四邊形是平行四邊形,即可證明.(2)利用矩形的性質(zhì),得到對(duì)角線互相平分,進(jìn)而證明四邊形是菱形,分別求出菱形的對(duì)角線長(zhǎng)度,利用對(duì)角線乘積的一半,求解面積即可.(3)添加的條件只要可以證明即可得到矩形.【詳解】解:(1)四邊形BPCO是平行四邊形,
∵BP∥AC,CP∥BD,∴四邊形BPCO是平行四邊形.(2)連接OP.∵四邊形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∠ABC=90°,∴OB=OC.又四邊形BPCO是平行四邊形,∴□BPCO是菱形.
∴OP⊥BC.又∵AB⊥BC,∴OP∥AB.又∵AC∥BP,四邊形是平行四邊形,∴OP=AB=6.∴S菱形BPCO=.(3)AB=BC或AC⊥BD等(答案不唯一).當(dāng)AB=BC時(shí),為菱形,此時(shí)有:,利用含有的平行四邊形為矩形,即可得到矩形,當(dāng)AC⊥BD時(shí),利用含有的平行四邊形為矩形,即可得到矩形.【點(diǎn)睛】本題主要是考查了平行四邊形、矩形和菱形的判定和性質(zhì),熟練掌握特殊四邊形的判定和性質(zhì),是求解該類問題的關(guān)鍵.3、(1)證明見解析;(2)【分析】(1)先證明再證明從而可得結(jié)論;(2)證明是等邊三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 24631-3:2025 EN Radiofrequency identification of animals - Part 3: Evaluation of performance of RFID transponders conforming with ISO 11784 and ISO 11785
- 【正版授權(quán)】 ISO 11237:2025 EN Rubber hoses and hose assemblies - Compact wire-braid-reinforced hydraulic types for oil-based or water-based fluids - Specification
- 【正版授權(quán)】 IEC 61300-2-5:2022/AMD1:2025 EN-FR Amendment 1 - Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 2-5: Tests - Torsi
- 【正版授權(quán)】 IEC 60300-3-10:2025 EN-FR Dependability management - Part 3-10: Application guide - Maintainability and maintenance
- GB/T 45962-2025氣象儀器設(shè)備性能測(cè)試方法大氣壓力
- 北汽越野安全知識(shí)培訓(xùn)課件
- 校園火災(zāi)逃亡安全知識(shí)培訓(xùn)課件
- 校園消防知識(shí)培訓(xùn)課件標(biāo)語
- 校園消防安全知識(shí)培訓(xùn)課件
- 安全飲水面試題及答案
- 2025年教育綜合理論知識(shí)試題及答案
- 普速《鐵路技術(shù)管理規(guī)程》普速鐵路部分
- 雙減新政下 如何優(yōu)化小學(xué)數(shù)學(xué)的作業(yè)設(shè)計(jì)專題講座ppt
- 綠色建筑施工專項(xiàng)方案
- 法蘭與墊片的基礎(chǔ)知識(shí)
- 急性呼吸窘迫綜合征護(hù)理
- GA 576-2018防尾隨聯(lián)動(dòng)互鎖安全門通用技術(shù)條件
- 渠道維護(hù)工試題
- 管道安裝組對(duì)檢查記錄
- 初中生簡(jiǎn)歷模板
- 哈爾濱市城市規(guī)劃管理技術(shù)規(guī)定
評(píng)論
0/150
提交評(píng)論