




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南開(kāi)封市金明中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形同步測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,AB∥CD,∠E+∠F=85°,則∠A+∠C=()A.85° B.105°C.115° D.95°2、如圖,AB=AC,點(diǎn)D、E分別在AB、AC上,補(bǔ)充一個(gè)條件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC3、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項(xiàng)中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E4、如圖,D為∠BAC的外角平分線(xiàn)上一點(diǎn),過(guò)D作DE⊥AC于E,DF⊥AB交BA的延長(zhǎng)線(xiàn)于F,且滿(mǎn)足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5、小東要從下面四組木棒中選擇一組制作一個(gè)三角形作品,你認(rèn)為他應(yīng)該選()組.A.,, B.,, C.,, D.,,6、如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FP交BA延長(zhǎng)線(xiàn)于點(diǎn)Q,下列結(jié)論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個(gè)數(shù)是()A.1 B.2 C.3 D.47、如圖,工人師傅在安裝木制門(mén)框時(shí),為防止變形,常常釘上兩條斜拉的木條,這樣做的數(shù)學(xué)依據(jù)是()A.兩點(diǎn)確定一條直線(xiàn)B.兩點(diǎn)之間,線(xiàn)段最短C.三角形具有穩(wěn)定性D.三角形的任意兩邊之和大于第三邊8、若三條線(xiàn)段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9、下列長(zhǎng)度的三條線(xiàn)段能組成三角形的是()A.348 B.4410 C.5610 D.561110、小明把一副含有45°,30°角的直角三角板如圖擺放其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠a+∠β等于()A.180° B.210° C.360° D.270°第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數(shù)為_(kāi)____°.2、圖①是將木條用釘子釘成的四邊形和三角形木架,拉動(dòng)木架,觀察圖②中的變動(dòng)情況,說(shuō)一說(shuō),其中所蘊(yùn)含的數(shù)學(xué)原理是_____.3、如圖,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面積為58,△ADC的面積為30,則△ABD的面積等于______.4、如圖,與的頂點(diǎn)A、B、D在同一直線(xiàn)上,,,,延長(zhǎng)分別交、于點(diǎn)F、G.若,,則______.5、如圖,在△中,已知點(diǎn)分別為的中點(diǎn),若△的面積為,則陰影部分的面積為_(kāi)________6、邊長(zhǎng)為1的小正方形組成如圖所示的6×6網(wǎng)格,點(diǎn)A,B,C,D,E,F(xiàn),G,H都在格點(diǎn)上.其中到四邊形ABCD四個(gè)頂點(diǎn)距離之和最小的點(diǎn)是_________.7、如圖,已知AB=12m,CA⊥AB于點(diǎn)A,DB⊥AB于點(diǎn)B,且AC=4m,點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動(dòng),每分鐘走1m,點(diǎn)Q從點(diǎn)B向點(diǎn)D運(yùn)動(dòng),每分鐘走2m.若P,Q兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)_____分鐘后,△CAP與△PQB全等.8、如圖,在中,已知點(diǎn),,分別為,,的中點(diǎn),且,則陰影部分的面積______.9、在△ABC中,若AC=3,BC=7則第三邊AB的取值范圍為_(kāi)_______.10、如圖,一把直尺的一邊緣經(jīng)過(guò)直角三角形的直角頂點(diǎn),交斜邊于點(diǎn);直尺的另一邊緣分別交、于點(diǎn)、,若,,則___________度.三、解答題(6小題,每小題10分,共計(jì)60分)1、已知:如圖,AC、BD相交于點(diǎn)O,,.求證:2、如圖,BM、CN都是?ABC的高,且BP﹦AC,CQ﹦AB,請(qǐng)?zhí)骄緼P與AQ的數(shù)量關(guān)系,并說(shuō)明理由.3、如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點(diǎn)為射線(xiàn)CB上一動(dòng)點(diǎn),連結(jié)AE,作AF⊥AE且AF=AE.(1)如圖1,過(guò)F點(diǎn)作FD⊥AC交AC于D點(diǎn),求證:FD=BC;(2)如圖2,連結(jié)BF交AC于G點(diǎn),若AG=3,CG=1,求證:E點(diǎn)為BC中點(diǎn).(3)當(dāng)E點(diǎn)在射線(xiàn)CB上,連結(jié)BF與直線(xiàn)AC交子G點(diǎn),若BC=4,BE=3,則.(直接寫(xiě)出結(jié)果)4、(1)如圖1,已知中,90°,,直線(xiàn)經(jīng)過(guò)點(diǎn)直線(xiàn),直線(xiàn),垂足分別為點(diǎn).求證:.證明:(2)如圖2,將(1)中的條件改為:在中,三點(diǎn)都在直線(xiàn)上,并且有.請(qǐng)寫(xiě)出三條線(xiàn)段的數(shù)量關(guān)系,并說(shuō)明理由.5、如圖,在長(zhǎng)方形ABCD中,AD=3,DC=5,動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿線(xiàn)段AD—DC以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從C點(diǎn)出發(fā)沿線(xiàn)段CD—DA以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)A運(yùn)動(dòng).ME⊥PQ于點(diǎn)E,NF⊥PQ于點(diǎn)F,設(shè)運(yùn)動(dòng)的時(shí)間為秒.(1)在運(yùn)動(dòng)過(guò)程中當(dāng)M、N兩點(diǎn)相遇時(shí),求t的值.(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,求DM的長(zhǎng).(用含t的代數(shù)式表示)(3)當(dāng)DEM與DFN全等時(shí),請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的DN的長(zhǎng).6、已知∠ACD=90°,MN是過(guò)點(diǎn)A的直線(xiàn),AC=DC,且DB⊥MN于點(diǎn)B,如圖易證BD+ABCB,過(guò)程如下:解:過(guò)點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)當(dāng)MN繞A旋轉(zhuǎn)到如圖(2)位置時(shí),BD、AB、CB滿(mǎn)足什么樣關(guān)系式,請(qǐng)寫(xiě)出你的猜想,并給予證明.(2)當(dāng)MN繞A旋轉(zhuǎn)到如圖(3)位置時(shí),BD、AB、CB滿(mǎn)足什么樣關(guān)系式,請(qǐng)直接寫(xiě)出你的結(jié)論.-參考答案-一、單選題1、D【分析】設(shè)交于點(diǎn),過(guò)點(diǎn)作,根據(jù)平行線(xiàn)的性質(zhì)可得,根據(jù)三角形的外角性質(zhì)可得,進(jìn)而即可求得【詳解】解:設(shè)交于點(diǎn),過(guò)點(diǎn)作,如圖,∵∴∠E+∠F=85°故選D【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì),三角形的外角性質(zhì),平角的定義,掌握三角形的外角性質(zhì)是解題的關(guān)鍵.2、C【分析】根據(jù)全等三角形的判定定理進(jìn)行判斷即可.【詳解】解:根據(jù)題意可知:AB=AC,,若,則根據(jù)可以證明△ABE≌△ACD,故A不符合題意;若AD=AE,則根據(jù)可以證明△ABE≌△ACD,故B不符合題意;若BE=CD,則根據(jù)不可以證明△ABE≌△ACD,故C符合題意;若∠AEB=∠ADC,則根據(jù)可以證明△ABE≌△ACD,故D不符合題意;故選:C.【點(diǎn)睛】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解本題的關(guān)鍵.3、C【分析】根據(jù)全等三角形的判定定理進(jìn)行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯(cuò)誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點(diǎn)睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關(guān)鍵.4、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點(diǎn)睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.5、D【分析】利用三角形的三邊關(guān)系,即可求解.【詳解】解:根據(jù)三角形的三邊關(guān)系,得:A、,不能組成三角形,不符合題意;B、,不能夠組成三角形,不符合題意;C、,不能夠組成三角形,不符合題意;D、,能夠組成三角形,符合題意.故選:D【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊只差小于第三邊是解題的關(guān)鍵.6、D【分析】首先證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對(duì)折,得到△BPF,利用角的關(guān)系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點(diǎn),∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點(diǎn)睛】本題主要是考查了三角形全等、正方形的性質(zhì),熟練地綜合應(yīng)用全等三角形以及正方形的性質(zhì),證明邊相等和角相等,是解決本題的關(guān)鍵.7、C【分析】根據(jù)三角形具有穩(wěn)定性進(jìn)行求解即可.【詳解】解:工人師傅在安裝木制門(mén)框時(shí),為防止變形,常常釘上兩條斜拉的木條,這樣做的數(shù)學(xué)依據(jù)是三角形具有穩(wěn)定性,故選C.【點(diǎn)睛】本題主要考查了三角形的穩(wěn)定性,熟知三角形具有穩(wěn)定性是解題的關(guān)鍵.8、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進(jìn)而求得三角形的個(gè)數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個(gè)值.則對(duì)應(yīng)的三角形有3個(gè).故選:C.【點(diǎn)睛】本題主要考查了三角形三邊關(guān)系,準(zhǔn)確分析判斷是解題的關(guān)鍵.9、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對(duì)各選項(xiàng)分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項(xiàng)不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項(xiàng)不符合題意;C.∵5+6>10,∴能組成三角形,故本選項(xiàng)符合題意;D.∵5+6=11,∴不能組成三角形,故本選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問(wèn)題的關(guān)鍵.10、B【分析】已知,得到,根據(jù)外角性質(zhì),得到,,再將兩式相加,等量代換,即可得解;【詳解】解:如圖所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故選D.【點(diǎn)睛】本題主要考查了三角形外角定理的應(yīng)用,準(zhǔn)確分析計(jì)算是解題的關(guān)鍵.二、填空題1、100【分析】直接利用三角形的外角的性質(zhì)得出∠CEO=80°,再利用全等三角形的性質(zhì)得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點(diǎn)睛】此題主要考查了全等三角形的性質(zhì)以及三角形的外角的性質(zhì),求出∠CEO=80°是解題關(guān)鍵.2、三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性【分析】根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性解答.【詳解】由圖示知,四邊形變形了,而三角形沒(méi)有變形,其中所蘊(yùn)含的數(shù)學(xué)原理是三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.故答案是:三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.【點(diǎn)睛】本題考查了三角形的穩(wěn)定性和四邊形具有不穩(wěn)定性,關(guān)鍵抓住圖中圖形是否變形,從而判斷是否具有穩(wěn)定性.3、28【分析】延長(zhǎng)交于,由證明,得出,得出,進(jìn)而得出,即可得出結(jié)果.【詳解】如圖所示,延長(zhǎng)交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:28.【點(diǎn)睛】此題考查全等三角形的判定與性質(zhì),三角形面積的計(jì)算,證明三角形全等得出是解題關(guān)鍵.4、【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質(zhì)求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì),全等三角形的判定與性質(zhì),以及三角形外角的性質(zhì),熟練掌握三角形的外角等于不相鄰的兩個(gè)內(nèi)角和是解答本題的關(guān)鍵.5、1【分析】根據(jù)三角形的中線(xiàn)把三角形分成兩個(gè)面積相等的三角形解答.【詳解】解:∵點(diǎn)E是AD的中點(diǎn),∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×4=2cm2,∴S△BCE=S△ABC=×4=2cm2,∵點(diǎn)F是CE的中點(diǎn),∴S△BEF=S△BCE=×2=1cm2.故答案為:1.【點(diǎn)睛】本題考查了三角形的面積,主要利用了三角形的中線(xiàn)把三角形分成兩個(gè)面積相等的三角形,原理為等底等高的三角形的面積相等.6、E【分析】到四邊形ABCD四個(gè)頂點(diǎn)距離之和最小的點(diǎn)是對(duì)角線(xiàn)的交點(diǎn),連接對(duì)角線(xiàn),直接判斷即可.【詳解】如圖所示,連接BD、AC、GA、GB、GC、GD,∵,,∴到四邊形ABCD四個(gè)頂點(diǎn)距離之和最小是,該點(diǎn)為對(duì)角線(xiàn)的交點(diǎn),根據(jù)圖形可知,對(duì)角線(xiàn)交點(diǎn)為E,故答案為:E.【點(diǎn)睛】本題考查了三角形三邊關(guān)系,解題關(guān)鍵是通過(guò)連接輔助線(xiàn),運(yùn)用三角形三邊關(guān)系判斷點(diǎn)的位置.7、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時(shí)間求得的長(zhǎng),根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動(dòng),每分鐘走1m,點(diǎn)Q從點(diǎn)B向點(diǎn)D運(yùn)動(dòng),每分鐘走2m,設(shè)運(yùn)動(dòng)時(shí)間為,且AC=4m,,當(dāng)時(shí)則,即,解得當(dāng)時(shí),則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點(diǎn)睛】本題考查了三角形全等的性質(zhì),根據(jù)全等的性質(zhì)列出方程是解題的關(guān)鍵.8、【分析】根據(jù)三角形中線(xiàn)性質(zhì),平分三角形面積,先利用AD為△ABC中線(xiàn)可得S△ABD=S△ACD,根據(jù)E為AD中點(diǎn),,根據(jù)BF為△BEC中線(xiàn),即可.【詳解】解:∵AD為△ABC中線(xiàn)∴S△ABD=S△ACD,又∵E為AD中點(diǎn),故,∴,∵BF為△BEC中線(xiàn),∴cm2.故答案為:1cm2.【點(diǎn)撥】本題考查了三角形中線(xiàn)的性質(zhì),牢固掌握并會(huì)運(yùn)用是解題關(guān)鍵.9、4<AB<10【分析】根據(jù)三角形的三邊關(guān)系,直接求解即可.【詳解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案為:.【點(diǎn)睛】本題考查的是三角形的三邊關(guān)系,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.三角形中第三邊的長(zhǎng)大于其他兩邊之差,小于其他兩邊之和.10、20【分析】利用平行線(xiàn)的性質(zhì)求出∠1,再利用三角形外角的性質(zhì)求出∠DCB即可.【詳解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20o,故答案為:20.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì),三角形外角的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).三、解答題1、見(jiàn)解析.【分析】利用“”證明,再利用全等三角形的性質(zhì)證明即可.【詳解】證明:在與中,,;.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練掌握三角形全等的判定方法.2、AP=AQ,理由見(jiàn)詳解【分析】由題意易得∠BNP=∠CMP=90°,則有∠ABP+∠BPN=∠QCA+∠MPC=90°,然后可得∠ABP=∠QCA,進(jìn)而可證△ABP≌△QCA,最后問(wèn)題可求解.【詳解】解:AP=AQ,理由如下:∵BM、CN都是?ABC的高,∴∠BNP=∠CMP=90°,∴∠ABP+∠BPN=∠QCA+∠MPC=90°,∵∠BPN=∠MPC,∴∠ABP=∠QCA,在△ABP和△QCA中,,∴△ABP≌△QCA(SAS),∴AP=AQ.【點(diǎn)睛】本題主要考查三角形的高線(xiàn)、直角三角形的性質(zhì)及全等三角形的性質(zhì)與判定,熟練掌握三角形的高線(xiàn)、直角三角形的性質(zhì)及全等三角形的性質(zhì)與判定是解題的關(guān)鍵.3、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)或【分析】(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質(zhì)得到DF=AC,等量代換證明結(jié)論;(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長(zhǎng),得到答案;(3)過(guò)F作FD⊥AG的延長(zhǎng)線(xiàn)交于點(diǎn)D,根據(jù)全等三角形的性質(zhì)得到CG=GD,AD=CE=7,代入計(jì)算即可.【詳解】(1)證明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,F(xiàn)D=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E點(diǎn)為BC中點(diǎn);(3)當(dāng)點(diǎn)E在CB的延長(zhǎng)線(xiàn)上時(shí),過(guò)F作FD⊥AG的延長(zhǎng)線(xiàn)交于點(diǎn)D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴AG=CG+AC=5.5,∴,同理,當(dāng)點(diǎn)E在線(xiàn)段BC上時(shí),AG=AC-CG+=2.5,∴,故答案為:或.【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.4、(1)證明見(jiàn)解析;(2),證明見(jiàn)解析【分析】(1)利用已知得出∠CAE=∠ABD,進(jìn)而利用AAS得出則△ABD≌△CAE,即可得出DE=BD+CE;(2)根據(jù)∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根據(jù)AAS證出△ADB≌△CEA,從而得出AE=BD,AD=CE,即可證出DE=BD+CE;【詳解】(1)DE=BD+CE.理由如下:如圖1,∵BD⊥,CE⊥,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2),理由如下:如圖2,∵∠BDA=∠AEC=∠BAC,∴∠DBA+∠BAD=∠BAD+∠CAE,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)綜合中的“一線(xiàn)三等角”模型:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對(duì)應(yīng)邊相等.也考查了等邊三角形的判定與性質(zhì).5、(1)2;(2)當(dāng)0≤t≤3時(shí),DM=3-t,當(dāng)3<t≤8時(shí),DM=t-3;(3)2或1【分析】(1)根據(jù)題意得:,解得:,即可求解;(2)根據(jù)題意得:當(dāng)0≤t≤3時(shí),AM=t,則DM=3-t,當(dāng)3<t≤8時(shí),DM=t-3,即可求解;(3)根據(jù)ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME=∠FDN,從而得到當(dāng)DEM與DFN全等時(shí),DM=DN,根據(jù)題意可得M到達(dá)點(diǎn)D時(shí),,M到達(dá)點(diǎn)C時(shí),,N到達(dá)點(diǎn)D時(shí),,N到達(dá)點(diǎn)A時(shí),,然后分兩種情況:當(dāng)時(shí)和當(dāng)時(shí),即可求解.【詳解】解:(1)根據(jù)題意得:,解得:,即在運(yùn)動(dòng)過(guò)程中當(dāng)M、N兩點(diǎn)相遇時(shí),t的值為2;(2)根據(jù)題意得:當(dāng)0≤t≤3時(shí),AM=t,則DM=3-t,當(dāng)3<t≤8時(shí),DM=t-3;(3)∵M(jìn)E⊥PQ,NF⊥PQ,∴∠DEM=∠DFN=90°,∴∠EDM+∠DME=90°,∵∠ADC=90°,∴∠EDM+∠FDN=90°,∴∠DME=∠FDN,∴當(dāng)DEM與DFN全等時(shí),DM=DN,∵M(jìn)到達(dá)點(diǎn)D時(shí),,M到達(dá)點(diǎn)C時(shí),,N到達(dá)點(diǎn)D時(shí),,N到達(dá)點(diǎn)A時(shí),,當(dāng)時(shí),DM=3-t,CN=3t,則DN=5-3t,∴3-t=5-3t,解得:t=1,∴此時(shí)DN=5-3t=2,當(dāng)時(shí),DM=3-t,DN=3t-5,∴3-t=3t-5,解得:,∴DN=3t-5=1,綜上所述,當(dāng)DEM與DFN全等時(shí),所有滿(mǎn)足條件的DN的長(zhǎng)為2或1.【點(diǎn)睛】本題主要考查了全等三角形的判定和性質(zhì),動(dòng)點(diǎn)問(wèn)題,利用分類(lèi)討論思
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西職業(yè)師范學(xué)院《機(jī)械制圖下》2024-2025學(xué)年第一學(xué)期期末試卷
- 勞動(dòng)合同范本及注意事項(xiàng)
- 衡水職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷
- 股票技術(shù)分析指標(biāo)應(yīng)用詳解
- 湖北恩施學(xué)院《計(jì)算機(jī)信息技術(shù)基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷
- 園長(zhǎng)教育敘事課件
- 大學(xué)生職業(yè)規(guī)劃及自我評(píng)價(jià)范文
- 二零二五版文化產(chǎn)品進(jìn)出口合同范本與版權(quán)交易規(guī)范
- 2025版綠色社區(qū)物業(yè)承包與環(huán)保技術(shù)應(yīng)用合同
- 二零二五年度校企合作大學(xué)生實(shí)習(xí)就業(yè)保障合同
- 水利部2002《水利建筑工程概算定額》
- 龍虎山正一日誦早晚課
- 微積分的力量
- 中國(guó)股票市場(chǎng)投資實(shí)務(wù)(山東聯(lián)盟)知到章節(jié)答案智慧樹(shù)2023年山東工商學(xué)院
- 安徽宇邦新型材料有限公司年產(chǎn)光伏焊帶2000噸生產(chǎn)項(xiàng)目環(huán)境影響報(bào)告表
- 號(hào)線(xiàn)項(xiàng)目tcms便攜式測(cè)試單元ptu軟件使用說(shuō)明
- 藝術(shù)課程標(biāo)準(zhǔn)(2022年版)
- 癲癇所致精神障礙
- 衛(wèi)生部手術(shù)分級(jí)目錄(2023年1月份修訂)
- 電荷及其守恒定律、庫(kù)侖定律鞏固練習(xí)
- YY 0666-2008針尖鋒利度和強(qiáng)度試驗(yàn)方法
評(píng)論
0/150
提交評(píng)論