難點(diǎn)解析-河南淮陽(yáng)縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練試卷(含答案詳解版)_第1頁(yè)
難點(diǎn)解析-河南淮陽(yáng)縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練試卷(含答案詳解版)_第2頁(yè)
難點(diǎn)解析-河南淮陽(yáng)縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練試卷(含答案詳解版)_第3頁(yè)
難點(diǎn)解析-河南淮陽(yáng)縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練試卷(含答案詳解版)_第4頁(yè)
難點(diǎn)解析-河南淮陽(yáng)縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練試卷(含答案詳解版)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南淮陽(yáng)縣7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形定向訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,△ABC中,D,E分別為BC,AD的中點(diǎn),若△CDE的面積使2,則△ABC的面積是()A.4 B.5 C.6 D.82、三根小木棒擺成一個(gè)三角形,其中兩根木棒的長(zhǎng)度分別是和,那么第三根小木棒的長(zhǎng)度不可能是()A. B. C. D.3、如圖,直線EF經(jīng)過(guò)AC的中點(diǎn)O,交AB于點(diǎn)E,交CD于點(diǎn)F,下列不能使△AOE≌△COF的條件為()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF4、如圖,E為線段BC上一點(diǎn),∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長(zhǎng)度為()A.12 B.10 C.8 D.65、如果一個(gè)三角形的兩邊長(zhǎng)分別為5cm和8cm,則第三邊長(zhǎng)可能是()A.2cm B.3cm C.12cm D.13cm6、如圖,D為∠BAC的外角平分線上一點(diǎn),過(guò)D作DE⊥AC于E,DF⊥AB交BA的延長(zhǎng)線于F,且滿足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)7、以下列長(zhǎng)度的三條線段為邊,能組成三角形的是()A. B. C. D.8、以下列各組線段為邊,能組成三角形的是()A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm9、下列各組圖形中,是全等形的是()A.兩個(gè)含30°角的直角三角形B.一個(gè)鈍角相等的兩個(gè)等腰三角形C.邊長(zhǎng)為5和6的兩個(gè)等腰三角形D.腰對(duì)應(yīng)相等的兩個(gè)等腰直角三角形10、下列長(zhǎng)度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.5611第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_(kāi)____.2、已知三角形的三邊分別為n,5,7,則n的范圍是_____.3、如圖,在△ABC中,∠C=90°,AD是BC邊上的中線,交BC于點(diǎn)D,CD=5cm,AC=12cm,則△ABD的面積是__________cm2.4、如圖,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,連接AC、BD交于點(diǎn)M,連接OM.下列結(jié)論:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正確的結(jié)論是_____.(填序號(hào))5、如圖,點(diǎn)A、B在直線l上,點(diǎn)C是直線l外一點(diǎn),可知CA+CB>AB,其依據(jù)是_____.6、如圖,在△ABC中,點(diǎn)D,E,F(xiàn)分別為BC,AD,CE的中點(diǎn),且S△BEF=2cm2,則S△ABC=__________.7、已知:如圖,AB=DB.只需添加一個(gè)條件即可證明.這個(gè)條件可以是______.(寫(xiě)出一個(gè)即可).8、如圖,在△ABC中,AD平分∠CAB,BD⊥AD,已知△ADC的面積為14,△ABD的面積為10,則△ABC的面積為_(kāi)_____.9、如圖,在中,,點(diǎn)D,E在邊BC上,,若,,則CE的長(zhǎng)為_(kāi)_____.10、在平面直角坐標(biāo)系中,點(diǎn)B(0,4),點(diǎn)A為x軸上一動(dòng)點(diǎn),連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時(shí)針?lè)较蚺帕校摇螧AE為直角),連接OE.當(dāng)OE最小時(shí),點(diǎn)E的縱坐標(biāo)為_(kāi)_____.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點(diǎn)F,且AD=CD.(1)求證:△ABD≌△CFD;(2)已知BC=9,AD=6,求AF的長(zhǎng).2、如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,CE交BA于點(diǎn)D,CE交BF于點(diǎn)M.求證:(1)EC=BF;(2)EC⊥BF.3、如圖,點(diǎn)E、A、C在同一直線上,AB∥CD,∠B=∠E,AC=CD.求證:BC=ED.4、如圖,已知AB=AD,AC=AE,BC=DE,延長(zhǎng)BC分別交邊AD、DE于點(diǎn)F、G.(1)∠B與∠D相等嗎?為什么?(2)若∠CAE=49°,求∠BGD的度數(shù).5、如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點(diǎn)為射線CB上一動(dòng)點(diǎn),連結(jié)AE,作AF⊥AE且AF=AE.(1)如圖1,過(guò)F點(diǎn)作FD⊥AC交AC于D點(diǎn),求證:FD=BC;(2)如圖2,連結(jié)BF交AC于G點(diǎn),若AG=3,CG=1,求證:E點(diǎn)為BC中點(diǎn).(3)當(dāng)E點(diǎn)在射線CB上,連結(jié)BF與直線AC交子G點(diǎn),若BC=4,BE=3,則.(直接寫(xiě)出結(jié)果)6、如圖,在每個(gè)小正方形的邊長(zhǎng)均相等的網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)(網(wǎng)格線的交點(diǎn))上.(1)線段CD將△ABC分成面積相等的兩個(gè)三角形,且點(diǎn)D在邊AB上,畫(huà)出線段CD.(2)△CBE≌△CBD,且點(diǎn)E在格點(diǎn)上,畫(huà)出△CBE.-參考答案-一、單選題1、D【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可求出的面積.【詳解】∵AD是BC上的中線,∴,∵CE是中AD邊上的中線,∴,∴,即,∵的面積是2,∴.故選:D.【點(diǎn)睛】本題考查的是三角形的中線的性質(zhì),三角形一邊上的中線把原三角形分成的兩個(gè)三角形的面積相等.2、D【分析】設(shè)第三根木棒長(zhǎng)為x厘米,根據(jù)三角形的三邊關(guān)系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設(shè)第三根木棒長(zhǎng)為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點(diǎn)睛】此題主要考查了三角形的三邊關(guān)系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.3、C【分析】根據(jù)全等三角形的判定逐項(xiàng)判斷即可.【詳解】解:∵直線EF經(jīng)過(guò)AC的中點(diǎn)O,∴OA=OC,A、∵OA=OC,∠A=∠C,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項(xiàng)不符合題意;B、∵AB∥CD,∴∠A=∠C,又∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),此選項(xiàng)不符合題意;C、由OA=OC,AE=CF,∠AOE=∠COF,不能證明△AOE≌△COF,符合題意;D、∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),此選項(xiàng)不符合題意,故選:C.【點(diǎn)睛】本題考查全等三角形的判定、對(duì)頂角相等,熟練掌握全等三角形的判定條件是解答的關(guān)鍵.4、A【分析】利用角相等和邊相等證明,利用全等三角形的性質(zhì)以及邊的關(guān)系,即可求出BE的長(zhǎng)度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點(diǎn)睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練通過(guò)已知條件證明三角形全等,利用全等性質(zhì)及邊的關(guān)系,來(lái)求解未知邊的長(zhǎng)度,這是解決本題的主要思路.5、C【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊可求得結(jié)果【詳解】解:設(shè)第三邊長(zhǎng)為c,由題可知,即,所以第三邊可能的結(jié)果為12cm故選C【點(diǎn)睛】本題主要考查了三角形的性質(zhì)中三角形的三邊關(guān)系知識(shí)點(diǎn)6、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點(diǎn)睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.7、D【分析】根據(jù)三角形的三邊關(guān)系,即可求解.【詳解】解:A、因?yàn)?,所以不能?gòu)成三角形,故本選項(xiàng)不符合題意;B、因?yàn)椋圆荒軜?gòu)成三角形,故本選項(xiàng)不符合題意;C、因?yàn)?,所以不能?gòu)成三角形,故本選項(xiàng)不符合題意;D、因?yàn)?,所以能?gòu)成三角形,故本選項(xiàng)符合題意;故選:D【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關(guān)鍵.8、A【分析】三角形的任意兩條之和大于第三邊,任意兩邊之差小于第三邊,根據(jù)原理再分別計(jì)算每組線段當(dāng)中較短的兩條線段之和,再與最長(zhǎng)的線段進(jìn)行比較,若和大于最長(zhǎng)的線段的長(zhǎng)度,則三條線段能構(gòu)成三角形,否則,不能構(gòu)成三角形,從而可得答案.【詳解】解:所以以3cm,4cm,5cm為邊能構(gòu)成三角形,故A符合題意;所以以3cm,3cm,6cm為邊不能構(gòu)成三角形,故B不符合題意;所以以5cm,10cm,4cm為邊不能構(gòu)成三角形,故C不符合題意;所以以1cm,2cm,3cm為邊不能構(gòu)成三角形,故D不符合題意;故選A【點(diǎn)睛】本題考查的是三角形的三邊之間的關(guān)系,掌握“利用三角形三邊之間的關(guān)系判定三條線段能否組成三角形”是解本題的關(guān)鍵.9、D【分析】根據(jù)兩個(gè)三角形全等的條件依據(jù)三角形全等判定方法SSS,SAS,AAS,SAS,HL逐個(gè)判斷得結(jié)論.【詳解】解:A、兩個(gè)含30°角的直角三角形,缺少對(duì)應(yīng)邊相等,故選項(xiàng)A不全等;B、一個(gè)鈍角相等的兩個(gè)等腰三角形.缺少對(duì)應(yīng)邊相等,故選項(xiàng)B不全等;C、腰為5底為6的三角形和腰為6底為5的三角形不全等,故選項(xiàng)C不全等;D、腰對(duì)應(yīng)相等,頂角是直角的兩個(gè)三角形滿足“邊角邊”,故選項(xiàng)D是全等形.故選:D.【點(diǎn)睛】本題主要考查了三角形全等的判定方法;需注意:判定兩個(gè)三角形全等時(shí),必須有邊的參與,還要找準(zhǔn)對(duì)應(yīng)關(guān)系.10、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對(duì)各選項(xiàng)分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項(xiàng)不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項(xiàng)不符合題意;C.∵5+6>10,∴能組成三角形,故本選項(xiàng)符合題意;D.∵5+6=11,∴不能組成三角形,故本選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問(wèn)題的關(guān)鍵.二、填空題1、【分析】根據(jù)題意過(guò)點(diǎn)B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過(guò)點(diǎn)B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點(diǎn)睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問(wèn)題的關(guān)鍵.2、2<n<12【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,即可求第三邊長(zhǎng)的范圍.【詳解】解:由三角形三邊關(guān)系定理得:7﹣5<n<7+5,即2<n<12故n的范圍是2<n<12.故答案為:2<n<12.【點(diǎn)睛】本題考查的是三角形三邊關(guān)系,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.3、30【分析】根據(jù)三角形的面積公式求出△ACD的面積,利用三角形中線的性質(zhì)即可求解.【詳解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面積為(cm2),∵AD是BC邊上的中線,∴△ACD的面積=△ABD的面積為(cm2),故答案為:30.【點(diǎn)睛】本題考查了三角形的面積和三角形中線的性質(zhì),關(guān)鍵是根據(jù)三角形的中線把三角形分成面積相等的兩部分解答.4、①②④【分析】由證明得出,,①正確;由全等三角形的性質(zhì)得出,由三角形的外角性質(zhì)得:,得出,②正確;作于,于,如圖所示:則,利用全等三角形對(duì)應(yīng)邊上的高相等,得出,由角平分線的判定方法得出平分,④正確;假設(shè)平分,則,由全等三角形的判定定理可得,得,而,所以,而,故③錯(cuò)誤;即可得出結(jié)論.【詳解】解:,,即,在和中,,,,,故①正確;,由三角形的外角性質(zhì)得:,,故②正確;作于,于,如圖所示,則,,,平分,故④正確;假設(shè)平分,則,在與中,,,,,,而,故③錯(cuò)誤;所以其中正確的結(jié)論是①②④.故答案為:①②④.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識(shí);證明三角形全等是解題的關(guān)鍵.5、在三角形中,兩邊之和大于第三邊【分析】根據(jù)三角形兩邊之和大于第三邊進(jìn)行求解即可.【詳解】解:∵點(diǎn)A、B在直線l上,點(diǎn)C是直線l外一點(diǎn),∴A、B、C可以構(gòu)成三角形,∴由三角形三邊的關(guān)系:在三角形中,兩邊之和大于第三邊可以得到:CA+CB>AB,故答案為:在三角形中,兩邊之和大于第三邊.【點(diǎn)睛】本題主要考查了三角形三邊的關(guān)系,熟知三角形中兩邊之和大于第三邊是解題的關(guān)鍵.6、8cm2【分析】由于三角形的中線將三角形分成面積相等的兩部分,則S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E點(diǎn)為AD的中點(diǎn)得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【詳解】解:∵F點(diǎn)為CE的中點(diǎn),∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D點(diǎn)為BC的中點(diǎn),∴S△BDE=S△BCE=2cm2,∵E點(diǎn)為AD的中點(diǎn),∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案為:8cm2.【點(diǎn)睛】本題考查了三角形的中線,根據(jù)三角形的中線等分三角形的面積是解本題的關(guān)鍵.7、AC=DC【分析】由題意可得,BC為公共邊,AB=DB,即添加一組邊對(duì)應(yīng)相等,可證△ABC與△DBC全等.【詳解】解:∵AB=DB,BC=BC,添加AC=DC,∴在△ABC與△DBC中,,∴△ABC≌△DBC(SSS),故答案為:AC=DC.【點(diǎn)睛】本題考查了全等三角形的判定,靈活運(yùn)用全等三角形的判定是本題的關(guān)鍵.8、28【分析】延長(zhǎng)BD交AC于點(diǎn)E,可得△ABD≌△AED,則△ABD與△AED的面積相等,點(diǎn)D是BE的中點(diǎn),從而△CED與△CBD的面積相等,且可求得△CED的面積,進(jìn)而求得結(jié)果.【詳解】延長(zhǎng)BD交AC于點(diǎn)E,如圖所示∵BD⊥AD∴∠ADB=∠ADE=90°∵AD平分∠CAB∴∠BAD=∠CAD∵AD=AD∴△ABD≌△AED(ASA)∴△ABD與△AED的面積相等,BD=ED∴點(diǎn)D是BE的中點(diǎn)∴△CED與△CBD的面積相等,且△CED的面積等于△ADC的面積與△ABD的面積的差,即為14-10=4∴△CBD的面積為4∴△ABC的面積=14+10+4=28故答案為:28【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),三角形一邊上的中線平分此三角形的面積等知識(shí),關(guān)鍵是構(gòu)造輔助線并證明△ABD≌△AED.9、5【分析】由題意易得,然后可證,則有,進(jìn)而問(wèn)題可求解.【詳解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案為5.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.10、-2【分析】過(guò)E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設(shè)A(a,0),可求得E(a+4,a),點(diǎn)E在直線y=x-4上,當(dāng)OE⊥CD時(shí),OE最小,據(jù)此求出坐標(biāo)即可.【詳解】解:如圖,過(guò)E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點(diǎn)C(4,0),點(diǎn)D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點(diǎn)E在直線CD上,當(dāng)OE⊥CD時(shí),OE最小,此時(shí)△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時(shí)點(diǎn)E的坐標(biāo)為:(2,-2).故答案為:-2【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是確定點(diǎn)E運(yùn)動(dòng)的軌跡,確定點(diǎn)E的位置.三、解答題1、(1)證明見(jiàn)解析;(2)AF=3【分析】(1)利用同角的余角相等,證明∠BAD=∠FCD,利用ASA證明即可;(2)利用全等三角形的性質(zhì),得BD=DF,結(jié)合BD=BC﹣CD,AF=AD﹣DF計(jì)算即可.【詳解】(1)證明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA);(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=9,AD=DC=6,∴BD=BC﹣CD=3,∴AF=AD﹣DF=6﹣3=3.【點(diǎn)睛】本題考查了ASA證明三角形全等,全等三角形的性質(zhì),熟練掌握三角形全等的判定和性質(zhì)是解題的關(guān)鍵.2、(1)見(jiàn)解析;(2)見(jiàn)解析【詳解】(1)先利用SAS證明△ABF≌△AEC即可得到EC=BF;(2)根據(jù)(1)中的全等推得∠AEC=∠ABF,根據(jù)∠BAE=90°,∠AEC+∠ADE=90°,再根據(jù)對(duì)頂角相等,等量代換后,推得∠BMD=90°.【解答】證明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAF,在△ABF和△AEC中,,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如圖,由(1)得:△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∴∠ADE=∠BDM(對(duì)頂角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=90°,∴EC⊥BF.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì)與判定,對(duì)頂角的定義,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.3、見(jiàn)解析【分析】利用AAS定理證明△ACB≌△CED,根據(jù)全等三角形的對(duì)應(yīng)邊相等證明即可.【詳解】證明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ACB≌△CED(AAS),∴BC=ED.【點(diǎn)睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、角角邊、邊邊邊是解題的關(guān)鍵.4、(1)相等,理由見(jiàn)解析;(2).【分析】(1)根據(jù)SSS證明,然后由全等三角形對(duì)應(yīng)邊相等即可證明;(2)由可得,進(jìn)而可求出,然后根據(jù)三角形外角的性質(zhì)即可求出∠BGD的度數(shù).【詳解】解:(1)相等,理由如下:在和中,∴,∴;(2)∵,∴,∴,∵,,∴.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論