難點(diǎn)解析-湖北省棗陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編綜合訓(xùn)練試卷_第1頁(yè)
難點(diǎn)解析-湖北省棗陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編綜合訓(xùn)練試卷_第2頁(yè)
難點(diǎn)解析-湖北省棗陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編綜合訓(xùn)練試卷_第3頁(yè)
難點(diǎn)解析-湖北省棗陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編綜合訓(xùn)練試卷_第4頁(yè)
難點(diǎn)解析-湖北省棗陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編綜合訓(xùn)練試卷_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省棗陽(yáng)市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編綜合訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,在由邊長(zhǎng)為1的7個(gè)正六邊形組成的網(wǎng)格中,點(diǎn)A,B在格點(diǎn)上.若再選擇一個(gè)格點(diǎn)C,使△ABC是直角三角形,且每個(gè)直角三角形邊長(zhǎng)均大于1,則符合條件的格點(diǎn)C的個(gè)數(shù)是(

)A.2 B.4 C.5 D.62、有一個(gè)直角三角形的兩邊長(zhǎng)分別為3和4,則第三邊的長(zhǎng)為()A.5 B. C. D.5或3、我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》有一道“蕩秋千”的問(wèn)題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭(zhēng)蹴.良工高士素好奇,算出索長(zhǎng)有幾?”此問(wèn)題可理解為:“如圖,有一架秋千,當(dāng)它靜止時(shí),踏板離地距離的長(zhǎng)為尺,將它向前水平推送尺時(shí),即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問(wèn)繩索有多長(zhǎng)?”,設(shè)秋千的繩索長(zhǎng)為尺,根據(jù)題意可列方程為(

)A. B.C. D.4、如圖,在中,,,,平分交于D點(diǎn),E,F(xiàn)分別是,上的動(dòng)點(diǎn),則的最小值為(

)A. B. C.3 D.5、如圖所示的網(wǎng)格是正方形網(wǎng)格,A,B,C,D是網(wǎng)格線交點(diǎn),則與的大小關(guān)系為(

)A. B. C. D.無(wú)法確定6、《九章算術(shù)》被尊為古代數(shù)學(xué)“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大小.以鋸鋸之,深一寸,鋸道長(zhǎng)一尺.問(wèn)徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個(gè)木材,鋸口深等于1寸,鋸道長(zhǎng)1尺,則圓形木材的直徑是(

)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸7、如圖,長(zhǎng)方體的底面邊長(zhǎng)分別為2cm和3cm,高為6cm.如果用一根細(xì)線從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞一圈達(dá)到點(diǎn)B,那么所用細(xì)線最短需要(

)A.11cm B.2cm C.(8+2)cm D.(7+3)cm第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,學(xué)校有一塊長(zhǎng)方形草坪,有極少數(shù)人為了避開(kāi)拐角走“捷徑”,在草坪內(nèi)走出了一條“路”,他們僅僅少走了________步路(假設(shè)步為米),卻踩傷了花草.2、把兩個(gè)同樣大小含角的三角尺按如圖所示的方式放置,其中一個(gè)三角尺的銳角頂點(diǎn)與另一個(gè)三角尺的直角頂點(diǎn)重合于點(diǎn),且另外三個(gè)銳角頂點(diǎn)在同一直線上.若,則____.3、如圖,在中,,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,過(guò)點(diǎn)作,垂足為,若,,則的長(zhǎng)為_(kāi)_.4、如圖,已知中,,,動(dòng)點(diǎn)M滿足,將線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段,連接,則的最小值為_(kāi)________.5、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱(chēng)點(diǎn)B'落在CD的延長(zhǎng)線上.若AB=10,BC=8,則△ACE的面積為_(kāi)_______.6、如圖所示,數(shù)軸上點(diǎn)A所表示的數(shù)為_(kāi)______.7、已知一直角三角形的兩條直角邊分別為6cm、8cm,則此直角三角形斜邊上的高為_(kāi)___.8、等腰△ABC中,AB=AC=10cm,BC=12cm,則BC邊上的高是_______cm.三、解答題(7小題,每小題10分,共計(jì)70分)1、勾股定理是人類(lèi)最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一,在《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,漢代數(shù)學(xué)家趙爽為證明勾股定理創(chuàng)制的“趙爽弦圖”也流傳至今.迄今為止已有多種證明勾股定理的方法.下面是數(shù)學(xué)課上創(chuàng)新小組驗(yàn)證過(guò)程的一部分.請(qǐng)認(rèn)真閱讀并根據(jù)他們的思路將后續(xù)的過(guò)程補(bǔ)充完整:將兩張全等的直角三角形紙片按圖所示擺放,其中,點(diǎn)在線段上,點(diǎn)在邊兩側(cè),試證明:.2、已知:在中,點(diǎn)在直線上,點(diǎn)在同一條直線上,且,【問(wèn)題初探】(1)如圖1,若平分,求證:.請(qǐng)依據(jù)以下的簡(jiǎn)易思維框圖,寫(xiě)出完整的證明過(guò)程.【變式再探】(2)如圖2,若平分的外角,交的延長(zhǎng)線于點(diǎn),問(wèn):和的數(shù)量關(guān)系發(fā)生改變了嗎?若改變,請(qǐng)寫(xiě)出正確的結(jié)論,并證明;若不改變,請(qǐng)說(shuō)明理由.【拓展運(yùn)用】(3)如圖3,在的條件下.若,求的長(zhǎng)度.3、如圖,把長(zhǎng)方形紙片沿折疊,使點(diǎn)落在邊上的點(diǎn)處,點(diǎn)落在點(diǎn)處.(1)試說(shuō)明;(2)設(shè),,,試猜想,,之間的關(guān)系,并說(shuō)明理由.4、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點(diǎn),且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說(shuō)明理由;(2)求△ABC的周長(zhǎng).5、如圖,在△ABC中,∠C=90°,M是BC的中點(diǎn),MD⊥AB于D,求證:.6、《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,作者是我國(guó)明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問(wèn)題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭(zhēng)蹴,終朝笑語(yǔ)歡嬉.良工高士素好奇,算出索長(zhǎng)有幾.”(注:1步=5尺)譯文:“有一架秋千,當(dāng)它靜止時(shí),踏板離地1尺,將它往前推送10尺(水平距離)時(shí),秋千的踏板就和人一樣高,這個(gè)人的身高為5尺,秋千的繩索始終拉得很直,問(wèn)繩索有多長(zhǎng).”7、如圖,是一塊草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求這塊草坪的面積.-參考答案-一、單選題1、D【解析】【分析】分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°時(shí),分別畫(huà)出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點(diǎn)C的個(gè)數(shù)是6個(gè)故選:D.【考點(diǎn)】本題考查正多邊形和圓的性質(zhì)、直角三角形的判定與性質(zhì)、直徑所對(duì)的圓周角是90°等知識(shí),是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.2、D【解析】【分析】分4是直角邊、4是斜邊兩種情況考慮,再根據(jù)勾股定理計(jì)算即可.【詳解】解:當(dāng)4是直角邊時(shí),斜邊==5;當(dāng)4是斜邊時(shí),另一條直角邊=;故選:D.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.3、C【解析】【分析】根據(jù)勾股定理列方程即可得出結(jié)論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,讀懂題意是解題的關(guān)鍵.4、D【解析】【分析】利用角平分線構(gòu)造全等,使兩線段可以合二為一,則EC+EF的最小值即為點(diǎn)C到AB的垂線段長(zhǎng)度.【詳解】在AB上取一點(diǎn)G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當(dāng)C、E、G三點(diǎn)共線時(shí),符合要求,此時(shí),作CH⊥AB于H點(diǎn),則CH的長(zhǎng)即為CE+EG的最小值,此時(shí),,∴CH==,即:CE+EF的最小值為,故選:D.【考點(diǎn)】本題考查了角平分線構(gòu)造全等以及線段和差極值問(wèn)題,靈活構(gòu)造輔助線是解題關(guān)鍵.5、C【解析】【分析】根據(jù)每個(gè)小網(wǎng)格都為正方形,設(shè)每個(gè)網(wǎng)格為1,由勾股定理可以求出AD、AC、CD的長(zhǎng),再由勾股定理的逆定理得到△ACD為等腰直角三角形,同理可得△ABC為等腰直角三角形,即∠BAC=∠DAC.【詳解】解:如圖,設(shè)正方形每個(gè)網(wǎng)格的邊長(zhǎng)都為1,連接CD、BC,則,,,,為等腰直角三角形,,同理:,,,,為等腰直角三角形,,.故選:C.【考點(diǎn)】本題考查勾股定理的性質(zhì)、勾股定理的逆定理以及等腰直角三角形的判定,解本題的關(guān)鍵要掌握勾股定理及逆定理的基本知識(shí).6、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設(shè)圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進(jìn)而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點(diǎn),則O、C、D三點(diǎn)共線,OC⊥AB,∴AC=BC=AB=5(寸),設(shè)圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點(diǎn)】本題主要考查了垂徑定理的應(yīng)用,勾股定理的應(yīng)用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關(guān)鍵.7、B【解析】【詳解】要求所用細(xì)線的最短距離,需將長(zhǎng)方體的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.解:將長(zhǎng)方體展開(kāi),連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..二、填空題1、【解析】【分析】少走的距離是AC+BC-AB,在直角△ABC中根據(jù)勾股定理求得AB的長(zhǎng)即可.【詳解】解:如圖,∵在中,,∴米,則少走的距離為:米,∵步為米,∴少走了步.故答案為:.【考點(diǎn)】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息,掌握勾股定理是解題的關(guān)鍵.2、.【解析】【分析】如圖,先利用等腰直角三角形的性質(zhì)求出,,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過(guò)點(diǎn)作于,在中,,,,兩個(gè)同樣大小的含角的三角尺,,在中,根據(jù)勾股定理得,,,故答案為.【考點(diǎn)】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.3、【解析】【分析】過(guò)作,為垂足,通過(guò)已知條件可以求得,,從而求得,再根據(jù)直角三角形的性質(zhì),即可求解.【詳解】解:過(guò)作,為垂足,,又,,又,,在與中,,,,∴,在中,,設(shè),則由勾股定理可得即解得故答案為.【考點(diǎn)】此題主要考查了三角形全等的證明方法和直角三角形的有關(guān)性質(zhì),利用已知條件合理構(gòu)造直角三角形是解決本題的關(guān)鍵.4、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關(guān)系得出當(dāng)點(diǎn)N落在線段AB上時(shí),最小,求出最小值即可.【詳解】解:∵線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關(guān)鍵是證明三角形全等,得出,根據(jù)三角形三邊關(guān)系取得最小值.5、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱(chēng)點(diǎn)B'落在CD的延長(zhǎng)線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點(diǎn)】本題考查直角三角形中的折疊問(wèn)題,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練運(yùn)用勾股定理.6、【解析】【分析】根據(jù)數(shù)軸上點(diǎn)的特點(diǎn)和相關(guān)線段的長(zhǎng),結(jié)合勾股定理求出斜邊長(zhǎng),即可求出-1和A之間的線段的長(zhǎng),即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長(zhǎng)為,那么-1和A之間的距離為,那么數(shù)軸上點(diǎn)A所表示的數(shù)為:.故答案為:.【考點(diǎn)】本題考查實(shí)數(shù)與數(shù)軸之間的對(duì)應(yīng)關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長(zhǎng)是解答本題的關(guān)鍵.7、4.8cm.【解析】【分析】根據(jù)勾股定理可求出斜邊.然后由于同一三角形面積一定,可列方程直接解答.【詳解】∵直角三角形的兩條直角邊分別為6cm,8cm,∴斜邊為=10(cm),設(shè)斜邊上的高為h,則直角三角形的面積為×6×8=×10h,解得:h=4.8cm,這個(gè)直角三角形斜邊上的高為4.8cm.故答案為4.8cm.【考點(diǎn)】此題考查勾股定理,解題關(guān)鍵在于列出方程.8、8【解析】【詳解】如圖,AD是BC邊上的高線.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案為8.三、解答題1、見(jiàn)解析.【解析】【分析】首先連結(jié),作延長(zhǎng)線于,則,根據(jù),易證,再根據(jù),,兩者相等,整理即可得證.【詳解】證明:連結(jié),作延長(zhǎng)線于,則即,∴∴即有:∴【考點(diǎn)】本題考查了勾股定理的證明,用兩種方法表示出四邊形ADFB的面積是解本題的關(guān)鍵.2、(1)見(jiàn)解析

(2);理由見(jiàn)解析

(3)【解析】【分析】(1)根據(jù)ASA證明得BE=BC,得,進(jìn)一步可得結(jié)論;(2)根據(jù)ASA證明得BE=BC,得;(3)連結(jié),分別求出∠AEB=∠ADE=∠ACB=22.5°,再證明AE=CD,∠ADC=90°,由勾股定理可得AC,由EC=EA+AC可得結(jié)論.【詳解】解:(1)證明平分,在和中,,;.理由:平分,在和中,,.連結(jié),,,,且,由得,,,.【考點(diǎn)】此題主要考查了全等三角形的判定與性質(zhì),勾股定理等知識(shí),連接AD是解答此題的關(guān)鍵.3、(1)證明見(jiàn)解析;(2),,之間的關(guān)系是.理由見(jiàn)解析.【解析】【分析】(1)根據(jù)折疊的性質(zhì)、平行的性質(zhì)及等角對(duì)等邊即可說(shuō)明;(2)根據(jù)折疊的性質(zhì)將AE、AB、BF都轉(zhuǎn)化到直角三角形中,由勾股定理可得,,之間的關(guān)系.【詳解】(1)由折疊的性質(zhì),得,,在長(zhǎng)方形紙片中,,∴,∴,∴,∴.(2),,之間的關(guān)系是.理由如下:由(1)知,由折疊的性質(zhì),得,,.在中,,所以,所以.【考點(diǎn)】本題主要考查了勾股定理,靈活利用折疊的性質(zhì)進(jìn)行線段間的轉(zhuǎn)化是解題的關(guān)鍵.4、(1)△BDC為直角三角形,理由見(jiàn)解析;(2)△ABC的周長(zhǎng)為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長(zhǎng),周長(zhǎng)即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設(shè)AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△AB

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論