




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,AB是的直徑,弦CD交AB于點(diǎn)P,,,,則CD的長為()A. B. C. D.82、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.3、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時期的官員獨(dú)孤信的印信是迄今發(fā)現(xiàn)的中國古代唯一一枚楷書印.它的表面均由正方形和等邊三角形組成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.4、同時拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.5、如圖,在中,,,若以點(diǎn)為圓心,的長為半徑的圓恰好經(jīng)過的中點(diǎn),則的長等于()A. B. C. D.6、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°7、將等邊三角形繞其中心旋轉(zhuǎn)n時與原圖案完全重合,那么n的最小值是()A.60 B.90 C.120 D.1808、下列四個圖案中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,與x軸交于、兩點(diǎn),,點(diǎn)P是y軸上的一個動點(diǎn),PD切于點(diǎn)D,則△ABD的面積的最大值是________;線段PD的最小值是________.2、一個盒子中裝有標(biāo)號為,,,的四個小球,這些球除標(biāo)號外都相同,從中隨機(jī)摸出兩個小球,則摸出的小球標(biāo)號之和大于的概率為______.3、如圖,、分別與相切于A、B兩點(diǎn),若,則的度數(shù)為________.4、圖①所示,平整的地面上有一個不規(guī)則圖案(圖中陰影部分),小明想了解該圖案的面積是多少,他采取了以下辦法:用一個長為6m,寬為4m的長方形,將不規(guī)則圖案圍起來,然后在適當(dāng)位置隨機(jī)地朝長方形區(qū)域扔小球,并記錄小球落在不規(guī)則圖案上的次數(shù)(球扔在界線上或長方形區(qū)域外不計(jì)實(shí)驗(yàn)結(jié)果),他將若干次有效實(shí)驗(yàn)的結(jié)果繪制成了②所示的折線統(tǒng)計(jì)圖,由此他估計(jì)不規(guī)則圖案的面積大約為_____m2.5、點(diǎn)P為邊長為2的正方形ABCD內(nèi)一點(diǎn),是等邊三角形,點(diǎn)M為BC中點(diǎn),N是線段BP上一動點(diǎn),將線段MN繞點(diǎn)M順時針旋轉(zhuǎn)60°得到線段MQ,連接AQ、PQ,則的最小值為______.6、兩直角邊分別為6、8,那么的內(nèi)接圓的半徑為____________.7、在一個布袋中,裝有除顏色外其它完全相同的2個紅球和2個白球,如果從中隨機(jī)摸出兩個球,那么摸到的兩個紅球的概率是________.三、解答題(7小題,每小題0分,共計(jì)0分)1、從2021年開始,重慶市新高考采用“”模式:“3”指全國統(tǒng)考科目,即:語文、數(shù)學(xué)、外語三個學(xué)科為必選科目;“1”為首選科目,即:物理、歷史這2個學(xué)科中任選1科,且必須選1科;“2”為再選科目,即:化學(xué)、生物、思想政治、地理這4個學(xué)科中任選2科,且必須選2科.小紅在高一上期期末結(jié)束后,需要選擇高考科目.(1)小紅在“首選科目”中,選擇歷史學(xué)科的概率是___________.(2)用列表法或畫樹狀圖法,求小紅在“再選科目”中選擇思想政治和地理這兩門學(xué)科的概率.2、隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻?、便捷.某校?shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請結(jié)合圖中所給的信息解答下列問題:(1)這次活動共調(diào)查了______人,并補(bǔ)充完整條形統(tǒng)計(jì)圖;(2)在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為______;(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表的方法,求出兩人恰好選擇同一種支付方式的概率.3、如圖1,點(diǎn)O為直線AB上一點(diǎn),將兩個含60°角的三角板MON和三角板OPQ如圖擺放,使三角板的一條直角邊OM、OP在直線AB上,其中.(1)將圖1中的三角板OPQ繞點(diǎn)O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得邊OP在的內(nèi)部且平分,此時三角板OPQ旋轉(zhuǎn)的角度為______度;(2)三角板OPQ在繞點(diǎn)O按逆時針方向旋轉(zhuǎn)時,若OP在的內(nèi)部.試探究與之間滿足什么等量關(guān)系,并說明理由;(3)如圖3,將圖1中的三角板MON繞點(diǎn)O以每秒2°的速度按順時針方向旋轉(zhuǎn),同時將三角板OPQ繞點(diǎn)O以每秒3°的速度按逆時針方向旋轉(zhuǎn),將射線OB繞點(diǎn)O以每秒5°的速度沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)后的射線OB記為OE,射線OC平分,射線OD平分,當(dāng)射線OC、OD重合時,射線OE改為繞點(diǎn)O以原速按順時針方向旋轉(zhuǎn),在OC與OD第二次相遇前,當(dāng)時,直接寫出旋轉(zhuǎn)時間t的值.4、太原是國家歷史文化名城,有很多旅游的好去處,周末哥哥計(jì)劃帶弟弟出去玩,放假前他收集了太原動物園、晉祠公園、森林公園、汾河濕地公園四個景點(diǎn)的旅游宣傳卡片,這些卡片的大小、形狀及背面完全相同,分別用D,J,S,F(xiàn)表示,如圖所示,請用列表或畫樹狀圖的方法,求下列事件發(fā)生的概率.(1)把這四張卡片背面朝上洗勻后,弟弟從中隨機(jī)抽取一張,作好記錄后,將卡片放回洗勻,哥哥再抽取一張,求兩人抽到同一景點(diǎn)的概率;(2)把這四張卡片背面朝上洗勻后,弟弟和哥哥從中各隨機(jī)抽取一張(不放回),求兩人抽到動物園和森林公園的概率.5、如圖,已知在中,,D、E是BC邊上的點(diǎn),將繞點(diǎn)A旋轉(zhuǎn),得到,連接.(1)當(dāng)時,時,求證:;(2)當(dāng)時,與有怎樣的數(shù)量關(guān)系?請寫出,并說明理由.(3)在(2)的結(jié)論下,當(dāng),BD與DE滿足怎樣的數(shù)量關(guān)系時,是等腰直角三角形?(直接寫出結(jié)論,不必證明)6、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴(yán)酷環(huán)境下,東線作戰(zhàn)部隊(duì)?wèi){著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實(shí)歷史.為紀(jì)念歷史,緬懷先烈,我校團(tuán)委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學(xué)生根據(jù)所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強(qiáng)從中隨機(jī)抽取一張,然后放回并洗勻,小葉再從中隨機(jī)抽取一張.請用列表或畫樹狀圖的方法求小強(qiáng)和小葉抽到的兩張卡片恰好是同一英雄人物的概率.7、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時,直接出的值.-參考答案-一、單選題1、A【分析】過點(diǎn)作于點(diǎn),連接,根據(jù)已知條件即可求得,根據(jù)含30度角的直角三角形的性質(zhì)即可求得,根據(jù)勾股定理即可求得,根據(jù)垂徑定理即可求得的長.【詳解】解:如圖,過點(diǎn)作于點(diǎn),連接,AB是的直徑,,,,在中,故選A【點(diǎn)睛】本題考查了勾股定理,含30度角的直角三角形的性質(zhì),垂徑定理,掌握以上定理是解題的關(guān)鍵.2、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點(diǎn)睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.3、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個正六邊形,里面有2個矩形,故選D.【點(diǎn)睛】本題靈活考查了三種視圖之間的關(guān)系以及視圖和實(shí)物之間的關(guān)系,同時還考查了對圖形的想象力,難度適中.4、A【分析】首先利用列舉法可得所有等可能的結(jié)果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣落地后的所有等可能的結(jié)果有:正正,正反,反正,反反,∴正面都朝上的概率是:
.故選A.【點(diǎn)睛】本題考查了列舉法求概率的知識.此題比較簡單,注意在利用列舉法求解時,要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.5、D【分析】連接CD,由直角三角形斜邊中線定理可得CD=BD,然后可得△CDB是等邊三角形,則有BD=BC=5cm,進(jìn)而根據(jù)勾股定理可求解.【詳解】解:連接CD,如圖所示:∵點(diǎn)D是AB的中點(diǎn),,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故選D.【點(diǎn)睛】本題主要考查圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理,熟練掌握圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理是解題的關(guān)鍵.6、C【分析】,,,進(jìn)而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形中對角互補(bǔ).解題的關(guān)鍵在于根據(jù)角度之間的數(shù)量關(guān)系求解.7、C【分析】根據(jù)旋轉(zhuǎn)對稱圖形的概念(把一個圖形繞著一個定點(diǎn)旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點(diǎn)叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角),找到旋轉(zhuǎn)角,求出其度數(shù).【詳解】解:等邊三角形繞其中心旋轉(zhuǎn)n時與原圖案完全重合,因而繞其中心旋轉(zhuǎn)的最小度數(shù)是=120°.故選C.【點(diǎn)睛】本題考查了根據(jù)旋轉(zhuǎn)對稱性,掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.8、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)不符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)符合題意;故選:D.【點(diǎn)睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題1、【分析】根據(jù)題中點(diǎn)的坐標(biāo)可得圓的直徑,半徑為1,分析以AB定長為底,點(diǎn)D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點(diǎn),根據(jù)切線的性質(zhì)及勾股定理可得,由其非負(fù)性即可得.【詳解】解:如圖所示:當(dāng)點(diǎn)P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點(diǎn)D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點(diǎn)D,∴,∴,設(shè)點(diǎn),在中,,,∴,在中,,∴,則,當(dāng)時,PD取得最小值,最小值為,故答案為:①;②.【點(diǎn)睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.2、【分析】根據(jù)題意畫出樹狀圖得出所有等可能的情況數(shù),找出符合條件的情況數(shù),然后根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等可能的情況數(shù),其中摸出的小球標(biāo)號之和大于5的有4種,則摸出的小球標(biāo)號之和大于5的概率為.故答案為:.【點(diǎn)睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回試驗(yàn)還是不放回試驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、【分析】根據(jù)已知條件可得出,,再利用圓周角定理得出即可.【詳解】解:、分別與相切于、兩點(diǎn),,,,,.故答案為:.【點(diǎn)睛】本題考查的知識點(diǎn)是切線的性質(zhì)以及圓周角定理,掌握以上知識點(diǎn)是解此題的關(guān)鍵.4、8.4【分析】首先假設(shè)不規(guī)則圖案面積為x,根據(jù)幾何概率知識求解不規(guī)則圖案占長方形的面積大??;繼而根據(jù)折線圖用頻率估計(jì)概率,綜合以上列方程求解.【詳解】解:假設(shè)不規(guī)則圖案面積為xm2,由已知得:長方形面積為24m2,根據(jù)幾何概率公式小球落在不規(guī)則圖案的概率為:,當(dāng)事件A試驗(yàn)次數(shù)足夠多,即樣本足夠大時,其頻率可作為事件A發(fā)生的概率估計(jì)值,故由折線圖可知,小球落在不規(guī)則圖案的概率大約為0.35,綜上有:=0.35,解得x=8.4.估計(jì)不規(guī)則圖案的面積大約為8.4m2.故答案為:8.4.【點(diǎn)睛】本題考查幾何概率以及用頻率估計(jì)概率,并在此基礎(chǔ)上進(jìn)行了題目創(chuàng)新,解題關(guān)鍵在于清晰理解題意,能從復(fù)雜的題目背景當(dāng)中找到考點(diǎn)化繁為簡,創(chuàng)新題目對基礎(chǔ)知識要求極高.5、【分析】如圖,取的中點(diǎn),連接,,,證明,進(jìn)而證明在上運(yùn)動,且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點(diǎn),連接,,,將線段MN繞點(diǎn)M順時針旋轉(zhuǎn)60°得到線段MQ,,是等邊三角形,,是的中點(diǎn),是的中點(diǎn)是等邊三角形,即在和中,又是的中點(diǎn)點(diǎn)在上是的中點(diǎn),是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點(diǎn)睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識轉(zhuǎn)化線段是解題的關(guān)鍵.6、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點(diǎn)睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關(guān)鍵;外心是三邊垂直平分線的交點(diǎn),外心到三個頂點(diǎn)的距離相等.7、【分析】畫樹狀圖,共有12個等可能的結(jié)果,摸到的兩個球顏色紅色的結(jié)果有2個,再由概率公式求解即可.【詳解】解:畫樹狀圖如圖:共有12個等可能的結(jié)果,摸到的兩個紅球的有2種結(jié)果,摸到的兩個紅球的概率是,故答案為:.【點(diǎn)睛】本題考查列表法或畫樹狀圖求概率,解題的關(guān)鍵是準(zhǔn)確畫出樹狀圖或列出表格.三、解答題1、(1)(2)【分析】(1)根據(jù)概率的公式計(jì)算可得答案;(2)畫樹狀圖,共有12個等可能的結(jié)果,該同學(xué)恰好選中思想政治和地理化兩科的結(jié)果有2個,再由概率公式求解即可.(1)解:選擇物理、歷史共有2中等可能結(jié)果,選擇歷史學(xué)科的結(jié)果有1種,所以選擇歷史學(xué)科的概率是;(2)假設(shè)A表示化學(xué)、B表示生物、C表示思想政治、D表示地理,畫樹狀圖如下圖:共有12個等可能的結(jié)果,該同學(xué)恰好選中思想政治和地理的結(jié)果有2個,所以該同學(xué)恰好選中思想政治和地理的概率為.【點(diǎn)睛】此題考查了概率的求法,利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=,還考查了用列表法或樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,做題的關(guān)鍵是掌握概率的求法.2、(1)200;補(bǔ)圖見解析;(2)81°;(3)【分析】(1)根據(jù)使用支付方式為銀行卡的占比為15%,人數(shù)為30人即可求得總?cè)藬?shù),根據(jù)微信支付所占的百分比為乘以總?cè)藬?shù)即可求得,根據(jù)總?cè)藬?shù)減去微信支付,銀行卡,現(xiàn)金,其他方式支付的人數(shù)即可求得支付寶支付的人數(shù);(2)先求得支付寶支付的人數(shù)所占比乘以360°即可求得扇形圓心角的度數(shù);(3)根據(jù)列表法求概率即可.【詳解】解:(1)(人)故答案為:200其中使用微信支付的有:(人)使用支付寶支付的有:(人)(2)故答案為:81°(3)將微信記為A,支付寶記為B,銀行卡記為C,列表格如下:ABCABC共有9種等可能性的結(jié)果,其中兩人恰好選擇同一種支付方式的結(jié)果有3種,則P(兩人恰好選擇同一種支付方式)【點(diǎn)睛】本題考查了扇形統(tǒng)計(jì)圖與條形統(tǒng)計(jì)圖信息關(guān)聯(lián),求條形統(tǒng)計(jì)圖某項(xiàng)數(shù)據(jù),求扇形統(tǒng)計(jì)圖圓心角,列表法求概率,掌握以上知識是解題的關(guān)鍵.3、(1)135°(2)∠MOP-∠NOQ=30°,理由見解析(3)s或s.【分析】(1)先根據(jù)OP平分得到∠PON,然后求出∠BOP即可;(2)先根據(jù)題意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋轉(zhuǎn)前OC、OD的夾角,然后再求出OC與OD第一次和第二次相遇所需要的時間,再設(shè)在OC與OD第二次相遇前,當(dāng)時,需要旋轉(zhuǎn)時間為t,再分OE在OC的左側(cè)和OE在OC的右側(cè)兩種情況解答即可.(1)解:∵OP平分∠MON∴∠PON=∠MON=45°∴三角板OPQ旋轉(zhuǎn)的角:∠BOP=∠PON+∠NOB=135°.故答案是135°(2)解:∠MOP-∠NOQ=30°,理由如下:∵∠MON=90°,∠POQ=60°∴∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,∴∠MOP-∠NOQ=90°-∠POQ-(60°-∠POQ)=30°.(3)解:∵射線OC平分,射線OD平分∴∠NOC=45°,∠POD=30°∴選擇前OC與OD的夾角為∠COD=∠NOC+∠NOP+∠POD=165°∴OC與OD第一次相遇的時間為165°÷(2°+3°)=33秒,此時OB旋轉(zhuǎn)的角度為33×5°=165°∴此時OC與OE的夾角165-(180-45-2×33)=96°OC與OD第二次相遇需要時間360°÷(3°+2°)=72秒設(shè)在OC與OD第二次相遇前,當(dāng)時,需要旋轉(zhuǎn)時間為t①當(dāng)OE在OC的左側(cè)時,有(5°-2°)t=96°-13°,解得:t=s②當(dāng)OE在OC的右側(cè)時,有(5°-2°)t=96°+13°,解得:t=s然后,①②都是每隔360÷(5°-2°)=120秒,出現(xiàn)一次這種現(xiàn)象∵C、D第二次相遇需要時間72秒∴在OC與OD第二次相遇前,當(dāng)時,、旋轉(zhuǎn)時間t的值為s或s.【點(diǎn)睛】本題主要考查了角平分線的定義、平角的定義、一元一次方程的應(yīng)用等知識點(diǎn),靈活運(yùn)用相關(guān)知識成為解答本題的關(guān)鍵.4、(1);(2).【分析】(1)根據(jù)題意列表可得共有16種等可能的結(jié)果,其中兩人抽到同一景點(diǎn)的結(jié)果有4種,進(jìn)而由概率公式求解即可;(2)根據(jù)題意列表可得共有12種等可能的結(jié)果,其中兩人抽到動物園和森林公園的結(jié)果有2種,進(jìn)而由概率公式求解即可.【詳解】解:(1)列表如下:DJSFD(D,D)(J,D)(S,D)(F,D)J(D,J)(J,J)(S,J)(F,J)S(D,S)(J,S)(S,S)(F,S)F(D,F)(J,F)(S,F)(F,F)所有等可能的情況數(shù)為16種,兩人抽到同一景點(diǎn)的結(jié)果有4種,所以兩人抽到同一景點(diǎn)的概率為.(2)列表如下:DJSFD(J,D)(S,D)(F,D)J(D,J)(S,J)(F,J)S(D,S)(J,S)(F,S)F(D,F)(J,F)(S,F)所有等可能的情況數(shù)為12種,其中兩人抽到動物園和森林公園的結(jié)果有2種,所以兩人抽到動物園和森林公園的概率為.【點(diǎn)睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.5、(1)見解析;(2)∠DAE=∠BAC,見解析;(3)DE=BD,見解析【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,從而得到∠DAE=∠D′AE,再利用“邊角邊”證明△ADE和△AD′E全等,根據(jù)全等三角形對應(yīng)邊相等證明即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,再利用“邊邊邊”證明△ADE和△AD′E全等,然后根據(jù)全等三角形對應(yīng)角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,從而得解;(3)求出∠D′CE=90°,然后根據(jù)等腰直角三角形斜邊等于直角邊的倍可得D′E=CD′,再根據(jù)旋轉(zhuǎn)的性質(zhì)解答即可.【詳解】(1)證明:∵△ABD繞點(diǎn)A旋轉(zhuǎn)得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC?∠DAE=120°?60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,,∴△ADE≌△AD′E(SAS),∴DE=D′E;(2)解:∠DAE=∠BAC.理由如下:在△ADE和△AD′E中,,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D′AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠D′CE=45°+45°=90°,∵△D′EC是等腰直角三角形,∴D′E=CD′,由(2)DE=D′E,∵△ABD繞點(diǎn)A旋轉(zhuǎn)得到△ACD′,∴BD=C′D,∴DE=BD.【點(diǎn)睛】本題考查了幾何變換的綜合題,旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),熟記旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小找出三角形全等的條件是解題的關(guān)鍵.6、【分析】根據(jù)題意列出樹狀圖,根據(jù)概率公式即可求解.【詳解】由題意做樹狀圖如下:故小強(qiáng)和小葉抽到的兩張卡片恰好是同一英雄人物的概率為.【點(diǎn)睛】此題考查了用列表法或樹狀圖法求概率,解題時要注意此題是放回試驗(yàn)還是不放回試驗(yàn),用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.7、(1);(2)證明見詳解;(3).【分析】(1)過點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時,與BE在△ABC外部時,當(dāng)BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時,BF+CE最短=BC′,此時點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠H
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 6877:2025 EN Dentistry - Endodontic obturating materials
- 【正版授權(quán)】 ISO 22504:2025 EN Oil and gas industries including lower carbon energy - Pipeline transportation systems - Onshore and offshore pipelines pig traps design requirements
- 液溫考試試題及答案
- 莆田哲理考試題及答案
- 機(jī)車制動試題及答案
- 校園安全知識培訓(xùn)課件圖片
- 神經(jīng)阻滯考試題及答案
- 安永稅務(wù)面試題及答案
- 高一語文期末考試題及答案
- 押運(yùn)員實(shí)體考試試題及答案
- GB/T 45411.1-2025光學(xué)和光子學(xué)瞄準(zhǔn)望遠(yuǎn)鏡規(guī)范第1部分:普通性能儀器
- 外銷出口流程培訓(xùn)
- 房屋建筑工程竣工驗(yàn)收技術(shù)資料統(tǒng)一用表(2024 版)
- 《企業(yè)研發(fā)費(fèi)用稅前加計(jì)扣除政策解讀與應(yīng)用課件》
- 《馬斯克英文介紹》課件
- OptiStruct結(jié)構(gòu)分析與工程應(yīng)用
- GA/T 1280-2024銀行自助設(shè)備安全性規(guī)范
- 帶狀皰疹后神經(jīng)痛的診治課件
- 火災(zāi)地震逃生演練課件
- 廣東省深圳市2024-2025學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試卷(含答案)
- 第6講立體幾何(2022-2023年高考真題)(原卷版)
評論
0/150
提交評論