




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省羅定市中考數(shù)學(xué)真題分類(勾股定理)匯編定向練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,由6個相同小正方形組成的網(wǎng)格中,A,B,C均在格點上,則∠ABC的度數(shù)為(
)A.45° B.50° C.55° D.60°2、如圖,在中,,,,平分交于D點,E,F(xiàn)分別是,上的動點,則的最小值為(
)A. B. C.3 D.3、小明想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿上的繩子垂到地面還多1m,當(dāng)它把繩子的下端拉開4m后,發(fā)現(xiàn)下端剛好接觸地面,則旗桿的高為(
)A.7m B.7.5m C.8m D.9m4、已知直角三角形的兩條邊長分別是3和4,那么這個三角形的第三條邊的長為(
)A.5 B.25 C. D.5或5、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果a2=b2?c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果,那么△ABC是直角三角形D.如果,那么△ABC是直角三角形6、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(
)A.50cm B.120cm C.140cm D.100cm7、如圖,在矩形ABCD中,,將△ABD沿對角線BD對折,得到△EBD,DE與BC交于F,,則(
)A. B.3 C. D.6第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖1,鄰邊長為2和6的矩形分割成①,②,③,④四塊后,拼接成如圖2不重疊、無縫隙的正方形,則圖2中的值為___________,圖1中的長為_______.2、《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有下列問題:“今有垣高一丈,倚木于垣,上與垣齊.引木卻行一尺,其木至地,問木長幾何?”其意思為:今有墻高1丈,倚木桿于墻,使木之上端與墻平齊,牽引木桿下端退行1尺,則木桿(從墻上)滑落至地上.問木桿是多長?(1丈=10尺)設(shè)木桿長為x尺根據(jù)題意,可列方程為______.3、勘測隊按實際需要構(gòu)建了平面直角坐標(biāo)系,并標(biāo)示了A,B,C三地的坐標(biāo),數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過A,B兩地.(1)A,B間的距離為______km;(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.4、《九章算術(shù)》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.5、如圖,在中,,于點D.E為線段BD上一點,連結(jié)CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.6、學(xué)習(xí)完《勾股定理》后,尹老師要求數(shù)學(xué)興趣小組的同學(xué)測量學(xué)校旗桿的高度.同學(xué)們發(fā)現(xiàn)系在旗桿頂端的繩子垂到了地面并多出了一段,但這條繩子的長度未知.如圖,經(jīng)測量,繩子多出的部分長度為1米,將繩子沿地面拉直,繩子底端距離旗桿底端4米,則旗桿的高度為______米.7、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點C與點A重合,折痕為DE,則△ABE的周長為.8、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是.三、解答題(7小題,每小題10分,共計70分)1、如圖,中,,,是邊上一點,且,若.求的長.2、如圖,把長方形紙片沿折疊,使點落在邊上的點處,點落在點處.(1)試說明;(2)設(shè),,,試猜想,,之間的關(guān)系,并說明理由.3、如圖所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為ts.(1)出發(fā)3s后,求PQ的長;(2)當(dāng)點Q在邊BC上運動時,出發(fā)多久后,△PQB能形成等腰三角形?(3)當(dāng)點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.4、已知,如圖,,C為上一點,與相交于點F,連接.,.(1)求證:;(2)已知,,,求的長度.5、如圖是一個長方形的大門,小強(qiáng)拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對角線的長.已知大門寬4尺,請求出竹竿的長.6、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.7、如圖所示,在中,,,,為邊上的中點.(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.-參考答案-一、單選題1、A【解析】【分析】連接AC,利用勾股定理分別求出AB、AC、BC,根據(jù)勾股定理的逆定理得到△ABC是等腰直角三角形,∠ACB=90°,再根據(jù)三角形內(nèi)角和定理得到答案.【詳解】連接AC,∵,,,∴,AC=BC,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=(180°-∠ACB)=45°.故選A.【考點】本題考查了等腰三角形,勾股定理的逆定理,解決問題的關(guān)鍵是作輔助線構(gòu)建三角形,熟練掌握等腰三角形的定義和性質(zhì),熟練運用勾股定理的逆定理判斷直角三角形.2、D【解析】【分析】利用角平分線構(gòu)造全等,使兩線段可以合二為一,則EC+EF的最小值即為點C到AB的垂線段長度.【詳解】在AB上取一點G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當(dāng)C、E、G三點共線時,符合要求,此時,作CH⊥AB于H點,則CH的長即為CE+EG的最小值,此時,,∴CH==,即:CE+EF的最小值為,故選:D.【考點】本題考查了角平分線構(gòu)造全等以及線段和差極值問題,靈活構(gòu)造輔助線是解題關(guān)鍵.3、B【解析】【分析】根據(jù)題意,畫出圖形,設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,根據(jù)勾股定理的方程(x+1)2=x2+42,解方程求得x的值即可.【詳解】如圖所示:設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,AC2=AB2+BC2,即(x+1)2=x2+42,解得:x=7.5.故選B.【考點】本題考查了勾股定理的應(yīng)用,解決本題的基本思路是是畫出示意圖,利用勾股定理列方程求解.4、D【解析】【分析】分情況討論:①當(dāng)邊長為4的邊作斜邊時;②當(dāng)邊長為4的邊作直角邊時,利用勾股定理分別求解即可.【詳解】解:當(dāng)邊長為4的邊作斜邊時,第三條邊的長度為;當(dāng)邊長為4的邊作直角邊時,第三條邊的長度為;綜上分析可知,這個三角形的第三條邊的長為5或,故D正確.故選:D.【考點】本題主要考查了勾股定理,掌握分類討論的思想是解題的關(guān)鍵.5、A【解析】【分析】根據(jù)直角三角形的判定和勾股定理的逆定理解答即可.【詳解】解:A、如果
a2=b2-c2,即b2=a2+c2,那么△ABC
是直角三角形且∠B=90°,選項錯誤,符合題意;B、如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項正確,不符合題意;C、如果
a2:b2:c2=9:16:25,滿足a2+b2=c2,那么△ABC
是直角三角形,選項正確,不符合題意;D、如果∠A-∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項正確,不符合題意;故選:A.【考點】本題考查的是直角三角形的判定和勾股定理的逆定理的應(yīng)用,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.6、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點】本題考查了勾股定理的應(yīng)用,理解題意,畫出圖形是解題的關(guān)鍵.7、A【解析】【分析】根據(jù)折疊的性質(zhì),可知BF=DF=-EF,在Rt中,由勾股定理得:,由此即可求得EF值.【詳解】解:∵,,∴AD=,,由折疊可知,AB=BE=6,AD=ED=,,,∵,∴∠BDF=∠DBF∴BF=DF=-EF,∴在Rt中,由勾股定理得:,∴,解得:EF=,故選:A.【考點】本題主要考查的是勾股定理的應(yīng)用,靈活利用折疊進(jìn)行發(fā)掘條件是解題的關(guān)鍵.二、填空題1、
【解析】【分析】由等積法解得正方形的邊長,再利用勾股定理解得圖④的直角邊FH的長,在圖2中,利用正弦的定義解得,接著利用勾股定理解得,據(jù)此解得的值,最后利用解答即可.【詳解】解:矩形的面積為:2×6=12正方形的邊長如圖1,如圖2,設(shè)或(舍去)故答案為:,.【考點】本題考查正方形與矩形、圖形的拼接,涉及勾股定理、正弦、余弦等知識,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.2、102+(x-1)2=x2【解析】【分析】當(dāng)木桿的上端與墻頭平齊時,木桿與墻、地面構(gòu)成直角三角形,設(shè)木桿長為x尺,則木桿底端離墻有(x-1)尺,根據(jù)勾股定理可列出方程.【詳解】解:如圖,設(shè)木桿AB長為x尺,則木桿底端B離墻的距離即BC的長有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案為:102+(x-1)2=x2.【考點】此題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是由實際問題抽象出直角三角形,從而運用勾股定理解題.3、
20
13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點的縱坐標(biāo)相同即可求出AB的長度;(2)根據(jù)A、B、C三點的坐標(biāo)可求出CE與AE的長度,設(shè)CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點的縱坐標(biāo)相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點C作l⊥AB于點E,連接AC,作AC的垂直平分線交直線l于點D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設(shè)CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點】本題考查了勾股定理,解題的關(guān)鍵是根據(jù)A、B、C三點的坐標(biāo)求出相關(guān)線段的長度,本題屬于中等題型.4、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長為尺,根據(jù)題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.5、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.6、7.5;【解析】【分析】旗桿、拉直的繩子與地面構(gòu)成直角三角形,根據(jù)題中數(shù)據(jù),用勾股定理即可解答.【詳解】解:如圖,設(shè)旗桿的長度為xm,則繩子的長度為:(x+1)m,在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,解得:x=7.5,∴旗桿的高度為7.5m,故答案為7.5.【考點】本題考查的是勾股定理的應(yīng)用,根據(jù)題意得出直角三角形是解答此題的關(guān)鍵.7、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質(zhì)得到AE=CE,進(jìn)而由三角形的周長=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長=AB+BC=3+4=7.故答案是:7.【考點】本題考查勾股定理、折疊性質(zhì),熟練掌握勾股定理是解答的關(guān)鍵.8、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質(zhì)得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設(shè)DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點C落在AB邊的C′點,∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設(shè)DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點:折疊的性質(zhì),勾股定理點評:折疊的性質(zhì):折疊前后兩圖形全等,即對應(yīng)角相等,對應(yīng)線段相等,對應(yīng)點的連線段被折痕垂直平分.三、解答題1、AC2=CE2+AE2=102+24∴AC=26,26÷5=5.2(s).答:它至少需要5.2s才能趕回巢中.【考點】本題考查了勾股定理的應(yīng)用.關(guān)鍵是構(gòu)造直角三角形,同時注意:時間=路程÷速度.2.2【解析】【分析】過點作于點,則,,結(jié)合可得出,進(jìn)而可得出,在中,利用勾股定理可求出的長,即,結(jié)合可求出的長.【詳解】解:過點作于點,如圖所示.,,,.,,.在中,∵,,即,,.又,,.【考點】本題考查了勾股定理、等腰三角形的性質(zhì)以及三角形內(nèi)角和定理,在中,利用勾股定理求出的長是解題的關(guān)鍵.2、(1)證明見解析;(2),,之間的關(guān)系是.理由見解析.【解析】【分析】(1)根據(jù)折疊的性質(zhì)、平行的性質(zhì)及等角對等邊即可說明;(2)根據(jù)折疊的性質(zhì)將AE、AB、BF都轉(zhuǎn)化到直角三角形中,由勾股定理可得,,之間的關(guān)系.【詳解】(1)由折疊的性質(zhì),得,,在長方形紙片中,,∴,∴,∴,∴.(2),,之間的關(guān)系是.理由如下:由(1)知,由折疊的性質(zhì),得,,.在中,,所以,所以.【考點】本題主要考查了勾股定理,靈活利用折疊的性質(zhì)進(jìn)行線段間的轉(zhuǎn)化是解題的關(guān)鍵.3、(1)PQ=cm(2)出發(fā)秒后△PQB能形成等腰三角形(3)當(dāng)t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【解析】【分析】(1)可求得AP和BQ,則可求得BP,由勾股定理即可得出結(jié)論;(2)用t可分別表示出BP和BQ,根據(jù)等腰三角形的性質(zhì)可得到BP=BQ,可得到關(guān)于t的方程,可求得t;(3)用t分別表示出BQ和CQ,利用等腰三角形的性質(zhì)可分BQ=BC、CQ=BC和BQ=CQ三種情況,分別得到關(guān)于t的方程,可求得t的值.(1)當(dāng)t=3時,則AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣AP=16﹣3=13(cm),在Rt△BPQ中,PQ===(cm).(2)由題意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,當(dāng)△PQB為等腰三角形時,則有BP=BQ,即16﹣t=2t,解得t=,∴出發(fā)秒后△PQB能形成等腰三角形;(3)①當(dāng)CQ=BQ時,如圖1所示,則∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②當(dāng)CQ=BC時,如圖2所示,則BC+CQ=24,∴t=24÷2=12秒.③當(dāng)BC=BQ時,如圖3所示,過B點作BE⊥AC于點E,則BE=,∴CE===,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.綜上所述:當(dāng)t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【考點】本題考查了勾股定理、等腰三角形的性質(zhì)、方程思想及分類討論思想等知識.用時間t表示出相應(yīng)線段的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇環(huán)境面試題及答案
- 中醫(yī)四診考試試題及答案
- 冰雪文化面試題及答案
- 危險品考試試題及答案
- 醫(yī)療器械考試試題及答案
- 校園伴舞基礎(chǔ)知識培訓(xùn)內(nèi)容課件
- 2025年豐都縣教育系統(tǒng)招聘教師考試筆試試題(含答案)
- 2025管理人員安全質(zhì)量培訓(xùn)考試題庫及參考答案
- 2025年煤礦一通三防知識考試題庫多選題(含答案)
- 煙花爆竹經(jīng)營培訓(xùn)試題及答案
- 維修工培訓(xùn)課件
- 船舶公司維修管理制度
- 2025屆天津市八年級英語第二學(xué)期期末達(dá)標(biāo)測試試題含答案
- 限價商品房購房定金合同書
- 檢測類安全管理制度
- 品管圈在提高住院患者口服藥規(guī)范服用率中的運用
- 喉炎病人護(hù)理課件
- 通信質(zhì)量員試題及答案
- 銀行還款證明協(xié)議書
- 《初中英語教師教學(xué)經(jīng)驗分享課件》
- TSG Z7002-2022特種設(shè)備檢測機(jī)構(gòu)核準(zhǔn)規(guī)則
評論
0/150
提交評論