




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、的周長(zhǎng)為32cm,AB:BC=3:5,則AB、BC的長(zhǎng)分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm2、在菱形ABCD中,兩條對(duì)角線AC=10,BD=24,則此菱形的邊長(zhǎng)為()A.14 B.25 C.26 D.133、如圖,在四邊形中,AB∥CD,添加下列一個(gè)條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.4、如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)C是y軸正半軸上的點(diǎn),于點(diǎn)C.已知,.點(diǎn)B到原點(diǎn)的最大距離為()A.22 B.18 C.14 D.105、如圖,把正方形紙片ABCD沿對(duì)邊中點(diǎn)所在的直線對(duì)折后展開,折痕為MN,再過點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,折痕為BE,若AB的長(zhǎng)為2,則FM的長(zhǎng)為()A.2 B. C. D.1第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC是格點(diǎn)三角形,點(diǎn)D為AC的中點(diǎn),則線段BD的長(zhǎng)為_____.2、如圖,O為坐標(biāo)原點(diǎn),△ABO的兩個(gè)頂點(diǎn)A(6,0),B(6,6),點(diǎn)D在邊AB上,點(diǎn)C在邊OA上,且BD=AC=1,點(diǎn)P為邊OB上的動(dòng)點(diǎn),則PC+PD的最小值為_____.3、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點(diǎn)C落在點(diǎn)P處;在AE上取一點(diǎn)Q,將ABQ,EDQ分別沿BQ,DQ折疊,點(diǎn)A,E恰好落在點(diǎn)P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當(dāng)四邊形BCDP是菱形,且Q,P,C三點(diǎn)共線時(shí),BQ=_______.4、七巧板被西方人稱為“東方魔術(shù)”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長(zhǎng)為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.5、在四邊形ABCD中,AB=BC=CD=DA=5cm,對(duì)角線AC,BD相交于點(diǎn)O,且AC=8cm,則四邊形ABCD的面積為______cm2.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在矩形中,為對(duì)角線.(1)用尺規(guī)完成以下作圖:在上找一點(diǎn),使,連接,作的平分線交于點(diǎn);(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,若,求的度數(shù).2、在如圖所示的4×3網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,正方形頂點(diǎn)叫格點(diǎn),連接兩個(gè)網(wǎng)格格點(diǎn)的線段叫網(wǎng)格線段.點(diǎn)A固定在格點(diǎn)上.(1)若a是圖中能用網(wǎng)格線段表示的最小無理數(shù),b是圖中能用網(wǎng)格線段表示的最大無理數(shù),則a=,b=,=;(2)請(qǐng)?jiān)诰W(wǎng)格中畫出頂點(diǎn)在格點(diǎn)上且邊長(zhǎng)為的所有菱形ABCD,你畫出的菱形面積分別為,.3、已知:如圖,,,AD是BC上的高線,CE是AB邊上的中線,于G.(1)若,求線段AC的長(zhǎng);(2)求證:.4、如圖,中,.(1)作點(diǎn)A關(guān)于的對(duì)稱點(diǎn)C;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)所作的圖中,連接,,連接,交于點(diǎn)O.求證:四邊形是菱形.5、如圖,在銳角△ABC內(nèi)部作出一個(gè)菱形ADEF,使∠A為菱形的一個(gè)內(nèi)角,頂點(diǎn)D、E、F分別落在AB、BC、CA邊上.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)-參考答案-一、單選題1、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長(zhǎng)為32cm,∴,即,解得:,∴.故選:C【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對(duì)邊相等是解題的關(guān)鍵.2、D【解析】【分析】由菱形的性質(zhì)和勾股定理即可求得AB的長(zhǎng).【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識(shí),熟練掌握菱形的性質(zhì),由勾股定理求出AB=13是解題的關(guān)鍵.3、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點(diǎn)睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.4、B【解析】【分析】首先取AC的中點(diǎn)E,連接BE,OE,OB,可求得OE與BE的長(zhǎng),然后由三角形三邊關(guān)系,求得點(diǎn)B到原點(diǎn)的最大距離.【詳解】解:取AC的中點(diǎn)E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點(diǎn)O,E,B不在一條直線上,則OB<OE+BE=18.若點(diǎn)O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點(diǎn)在一條直線上時(shí),OB取得最大值,最大值為18.故選:B【點(diǎn)睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對(duì)邊中點(diǎn)所在的直線對(duì)折后展開,折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點(diǎn)睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).二、填空題1、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點(diǎn)D為AC的中點(diǎn),∴BD為AC邊上的中線,∴BD=AC,故答案為:【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,勾股定理逆定理的應(yīng)用,判斷出△ABC是直角三角形是解題的關(guān)鍵.2、6【解析】【分析】過點(diǎn)D作DE⊥AB交y軸于點(diǎn)E,交BO于點(diǎn)P,得矩形ACPD,正方形OCPE,此時(shí)PC+PD的值最?。驹斀狻拷猓骸逜(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如圖,過點(diǎn)D作DE⊥AB交y軸于點(diǎn)E,交BO于點(diǎn)P,∴∠PDA=∠DAC=∠PCA=90°,∴四邊形ACPD是矩形,∴AC=DP,PC=AD,同理可得四邊形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四邊形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此時(shí)PC+PD的值最小,為6.故答案為:6.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì),正方形的判定以及垂線段最短問題.3、120240【解析】【分析】(1)由折疊的性質(zhì)可得∠A=∠BPQ=120°;(2)由周角的性質(zhì)可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質(zhì)可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質(zhì)可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點(diǎn)共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點(diǎn)睛】本題考查了翻折變換,菱形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識(shí),掌握折疊的性質(zhì)是解題的關(guān)鍵.4、4【解析】【分析】設(shè)陰影小正方形的邊長(zhǎng)為xcm,根據(jù)陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進(jìn)而得出大正方形的對(duì)角線的長(zhǎng)度是4xcm,最后求出邊長(zhǎng)a即可.【詳解】解:設(shè)陰影小正方形的邊長(zhǎng)為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長(zhǎng)為cm,則大正方形的對(duì)角線長(zhǎng)為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點(diǎn)睛】本題主要考查七巧板的知識(shí),熟練掌握七巧板各邊的關(guān)系是解題的關(guān)鍵.5、24【解析】【分析】根據(jù)題意作圖,得出四邊形為菱形,再根據(jù)菱形的性質(zhì)進(jìn)行求解面積即可.【詳解】解:根據(jù)題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點(diǎn)睛】本題考查了菱形的判定及形,勾股定理,解題的關(guān)鍵是判斷四邊形是菱形.三、解答題1、(1)圖形見解析;(2)【分析】(1)利用尺規(guī)根據(jù)題意即可完成作圖;
(2)結(jié)合(1)根據(jù)等腰三角形的性質(zhì)和三角形外角定理可得的度數(shù).【詳解】(1)如圖,點(diǎn)E和點(diǎn)F即為所求;
(2)∵,∠ABD=68°,
∴∠AEB=∠AEB=68°∴∠EAB=180°-68°-68°=44°,
∴∠EAD=90°-44°=46°,
∵AF平分∠DAE,
∴∠FAE=∠DAE=23°,
∴【點(diǎn)睛】題考查了尺規(guī)作圖-作角平分線,矩形的性質(zhì),熟練掌握5種基本作圖是解決此類問題的關(guān)鍵.2、(1),2,;(2)4或5.【分析】(1)借助網(wǎng)格得出最大的無理數(shù)以及最小的無理數(shù),進(jìn)而求出即可;(2)根據(jù)要求周長(zhǎng)邊長(zhǎng)為的菱形即可.【詳解】解:(1)由題意得:a=,b=2,
∴;
故答案為:,2,;(2)如圖1,2中,菱形ABCD即為所求.
菱形ABCD的面積為=×4×2=4或菱形ABCD的面積=×=5,
故答案為:4或5.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì)作圖,無理數(shù),勾股定理,菱形的性質(zhì)等知識(shí),解題的關(guān)鍵是理解題意,正確作出圖形解決問題.3、(1);(2)見解析【分析】(1)根據(jù)30°角所對(duì)直角邊等于斜邊的一半,得到AD=3,根據(jù)等腰直角三角形,得到CD=AD=3,根據(jù)勾股定理,得到AC的長(zhǎng)即可;(2)根據(jù)斜邊上的中線等于斜邊的一半,得到DE=DC,根據(jù)等腰三角形三線合一性質(zhì),證明即可.【詳解】(1),;(2)連接DE,,,,,,.【點(diǎn)睛】本題考查了30°角的性質(zhì),等腰直角三角形的性質(zhì),斜邊上中線的性質(zhì),等腰三角形三線合一性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.4、(1)見解析;(2)見解析【分析】(1)作BD的垂直平分線,再截取即可;(2)先證明三角形全等,然后根據(jù)全等三角形的性質(zhì)可得:,依據(jù)菱形的判定定理即可證明.【詳解】(1)解:如圖所示,作BD的垂直平分線,再截取,點(diǎn)即為所求.(2)證明:如圖所示:∵,,∴,在與中,,∴;∴,又∵,∴四邊形是菱形.【點(diǎn)睛】本題考查了尺規(guī)作圖和菱形的證明,解題關(guān)鍵是熟練運(yùn)用尺規(guī)作圖方法和菱形的判定定理進(jìn)行作圖與證明.5、見解析【分析】根據(jù)基本作圖先作∠BAC的平分線AE,交BC于E,再利用基本作圖作AE的垂直平分線DF交AB于D,交AC與F,連接DE,EF,則菱形ADEF為所求,然后證明即可.【詳解】解:先作∠BAC的平分線AE,交
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 夏季防汛考試題及答案
- 北京知識(shí)產(chǎn)權(quán)培訓(xùn)課程課件
- 食品理化檢驗(yàn)檢測(cè)理論知識(shí)考核試題題庫(kù)及答案
- 2025年金融市場(chǎng)機(jī)構(gòu)基礎(chǔ)知識(shí)考試題庫(kù)與解析附含答案
- 2025年瘧疾知識(shí)培訓(xùn)考試試題(含答案)
- 2024山東省社區(qū)《網(wǎng)格員》點(diǎn)睛提分卷(含答案)
- 2024年安全員之A證考試題庫(kù)及參考答案【奪分金卷】
- 標(biāo)準(zhǔn)日本語課件-第7課
- 呼吸機(jī)相關(guān)知識(shí)試題及答案
- 標(biāo)準(zhǔn)化授課課件
- 2025年中小學(xué)體育教師招聘考試專業(yè)基礎(chǔ)知識(shí)考試題庫(kù)及答案(共2337題)
- 云南省康旅控股集團(tuán)有限公司招聘考試真題2024
- 2025年教育法律法規(guī)試題庫(kù)及答案
- (標(biāo)準(zhǔn))第三方合同轉(zhuǎn)讓協(xié)議書
- GB/T 20988-2025網(wǎng)絡(luò)安全技術(shù)信息系統(tǒng)災(zāi)難恢復(fù)規(guī)范
- 2025廣西公需科目考試答案(3套涵蓋95-試題)一區(qū)兩地一園一通道建設(shè)人工智能時(shí)代的機(jī)遇與挑戰(zhàn)
- 男女導(dǎo)尿并發(fā)癥
- 沉淀池安全操作規(guī)程
- 職業(yè)規(guī)劃楊彬課件
- 車間現(xiàn)場(chǎng)品質(zhì)培訓(xùn)
- 新教師職業(yè)素養(yǎng)提升培訓(xùn)
評(píng)論
0/150
提交評(píng)論