河北勞動(dòng)關(guān)系職業(yè)學(xué)院《版式編排設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
河北勞動(dòng)關(guān)系職業(yè)學(xué)院《版式編排設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
河北勞動(dòng)關(guān)系職業(yè)學(xué)院《版式編排設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
河北勞動(dòng)關(guān)系職業(yè)學(xué)院《版式編排設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
河北勞動(dòng)關(guān)系職業(yè)學(xué)院《版式編排設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共2頁河北勞動(dòng)關(guān)系職業(yè)學(xué)院《版式編排設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的表情識別任務(wù)中,判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個(gè)用于在線教育的表情識別系統(tǒng),以下關(guān)于表情識別方法的描述,哪一項(xiàng)是不正確的?()A.可以通過分析面部肌肉的運(yùn)動(dòng)和特征點(diǎn)的變化來識別表情B.深度學(xué)習(xí)模型能夠?qū)W習(xí)不同表情的模式和特征,實(shí)現(xiàn)準(zhǔn)確的表情分類C.表情識別系統(tǒng)需要考慮光照、頭部姿態(tài)和遮擋等因素的影響D.表情識別可以準(zhǔn)確地識別出所有細(xì)微和復(fù)雜的表情,不受個(gè)體差異和文化背景的影響2、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張不同視角拍攝的同一物體的圖像進(jìn)行對齊。以下關(guān)于圖像配準(zhǔn)方法的描述,正確的是:()A.基于特征點(diǎn)的配準(zhǔn)方法對圖像的旋轉(zhuǎn)、縮放和平移具有不變性,但特征點(diǎn)的提取容易出錯(cuò)B.基于灰度的配準(zhǔn)方法計(jì)算簡單,但對光照變化和噪聲敏感C.深度學(xué)習(xí)中的自監(jiān)督學(xué)習(xí)方法在圖像配準(zhǔn)中無法學(xué)習(xí)到有效的特征表示D.圖像配準(zhǔn)的精度只取決于配準(zhǔn)算法的選擇,與圖像的質(zhì)量和特征無關(guān)3、計(jì)算機(jī)視覺在文物保護(hù)和數(shù)字化中的應(yīng)用可以幫助記錄和分析文物信息。假設(shè)要對一件古老的雕塑進(jìn)行三維數(shù)字化和表面紋理分析,以下關(guān)于文物保護(hù)計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.傳統(tǒng)的攝影測量方法在文物數(shù)字化中比基于深度學(xué)習(xí)的方法更精確B.文物的復(fù)雜形狀和表面材質(zhì)對數(shù)字化和分析過程沒有挑戰(zhàn)C.結(jié)合多種成像技術(shù)和計(jì)算機(jī)視覺算法能夠更全面地獲取文物的信息D.文物保護(hù)中的計(jì)算機(jī)視覺應(yīng)用不需要考慮對文物的非接觸性和無損性要求4、計(jì)算機(jī)視覺在文物保護(hù)和修復(fù)中的應(yīng)用逐漸增多。假設(shè)要對一幅古老的繪畫進(jìn)行數(shù)字化修復(fù)和增強(qiáng),以下關(guān)于顏色恢復(fù)的挑戰(zhàn),哪一項(xiàng)是最為顯著的?()A.由于年代久遠(yuǎn),原畫作的顏色信息缺失嚴(yán)重B.不同區(qū)域的顏色褪色程度不一致,難以統(tǒng)一恢復(fù)C.缺乏對原畫作創(chuàng)作時(shí)所用顏料的了解,難以準(zhǔn)確還原顏色D.修復(fù)過程中可能引入新的顏色偏差,影響修復(fù)效果5、在計(jì)算機(jī)視覺領(lǐng)域中,當(dāng)需要對監(jiān)控視頻中的行人進(jìn)行實(shí)時(shí)檢測和跟蹤,以實(shí)現(xiàn)智能安防系統(tǒng)的功能時(shí),以下哪種方法在處理復(fù)雜場景和多目標(biāo)跟蹤方面可能表現(xiàn)更為出色?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測算法C.基于特征匹配的跟蹤算法D.基于光流法的跟蹤算法6、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)是確定物體在三維空間中的位置和方向。假設(shè)要估計(jì)一個(gè)機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計(jì)方法的描述,哪一項(xiàng)是不正確的?()A.基于視覺的姿態(tài)估計(jì)可以通過分析物體在圖像中的特征點(diǎn)來計(jì)算其姿態(tài)B.可以結(jié)合多個(gè)攝像頭的圖像信息,提高姿態(tài)估計(jì)的精度和魯棒性C.姿態(tài)估計(jì)通常需要先對物體進(jìn)行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受圖像噪聲、遮擋和物體形狀變化的影響7、計(jì)算機(jī)視覺中的視覺跟蹤在監(jiān)控、機(jī)器人導(dǎo)航等領(lǐng)域有廣泛應(yīng)用。假設(shè)一個(gè)機(jī)器人需要跟蹤一個(gè)移動(dòng)的物體,同時(shí)適應(yīng)物體的外觀變化和環(huán)境干擾。以下哪種視覺跟蹤方法能夠提供較好的長期跟蹤性能和魯棒性?()A.基于核相關(guān)濾波的跟蹤方法B.基于深度學(xué)習(xí)的孿生網(wǎng)絡(luò)跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運(yùn)動(dòng)估計(jì)的跟蹤方法8、在一個(gè)基于計(jì)算機(jī)視覺的機(jī)器人導(dǎo)航系統(tǒng)中,需要根據(jù)環(huán)境圖像來規(guī)劃機(jī)器人的路徑。以下哪種視覺導(dǎo)航方法可能更適合復(fù)雜動(dòng)態(tài)環(huán)境?()A.基于地圖的導(dǎo)航B.基于視覺里程計(jì)的導(dǎo)航C.基于深度學(xué)習(xí)的端到端導(dǎo)航D.以上都是9、當(dāng)利用計(jì)算機(jī)視覺技術(shù)對醫(yī)學(xué)影像(如X光、CT等)進(jìn)行分析,輔助醫(yī)生進(jìn)行疾病診斷時(shí),需要從大量的圖像數(shù)據(jù)中提取有價(jià)值的特征。以下哪種特征提取方法在醫(yī)學(xué)影像分析中可能具有較高的應(yīng)用價(jià)值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)D.基于顏色的特征提取10、計(jì)算機(jī)視覺在無人駕駛中的應(yīng)用至關(guān)重要。假設(shè)要通過車載攝像頭識別道路上的交通標(biāo)志和標(biāo)線,以下關(guān)于應(yīng)對復(fù)雜環(huán)境變化的策略,哪一項(xiàng)是不正確的?()A.利用多模態(tài)數(shù)據(jù)融合,如結(jié)合攝像頭和激光雷達(dá)的信息B.定期更新模型,適應(yīng)新出現(xiàn)的交通標(biāo)志和標(biāo)線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對不同天氣和光照條件下的數(shù)據(jù)進(jìn)行增強(qiáng)訓(xùn)練11、在計(jì)算機(jī)視覺的場景理解任務(wù)中,需要對圖像中的物體、關(guān)系和上下文進(jìn)行綜合分析。假設(shè)要理解一個(gè)室內(nèi)場景的布局和功能,以下哪種信息可能是最關(guān)鍵的?()A.物體的形狀和顏色B.物體之間的空間位置關(guān)系C.圖像的亮度和對比度D.圖像的拍攝角度12、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,將不同視角或時(shí)間拍攝的圖像進(jìn)行對齊,以下哪種變換模型可能適用于具有較大形變的圖像配準(zhǔn)?()A.剛性變換B.仿射變換C.投影變換D.非線性變換13、計(jì)算機(jī)視覺中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要估計(jì)一段視頻中物體的運(yùn)動(dòng)速度和方向,以下關(guān)于光流估計(jì)方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計(jì)方法在復(fù)雜場景中能夠準(zhǔn)確計(jì)算光流B.深度學(xué)習(xí)中的光流估計(jì)網(wǎng)絡(luò)不需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練C.光流估計(jì)的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時(shí)空信息的深度學(xué)習(xí)光流估計(jì)方法能夠提高估計(jì)的準(zhǔn)確性和魯棒性14、計(jì)算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,恢復(fù)清晰的圖像。假設(shè)要處理一張受到嚴(yán)重噪聲污染的天文圖像,以下關(guān)于去噪算法的選擇,哪一項(xiàng)是需要謹(jǐn)慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學(xué)習(xí)的去噪算法,如自編碼器C.只考慮去噪效果,不關(guān)心圖像細(xì)節(jié)的保留D.根據(jù)噪聲的類型和強(qiáng)度選擇合適的去噪算法15、計(jì)算機(jī)視覺在工業(yè)檢測中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)要檢測生產(chǎn)線上的零件是否存在缺陷,以下關(guān)于工業(yè)檢測中的計(jì)算機(jī)視覺應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以使用機(jī)器視覺系統(tǒng)對零件進(jìn)行實(shí)時(shí)檢測,快速發(fā)現(xiàn)缺陷B.深度學(xué)習(xí)模型能夠自動(dòng)學(xué)習(xí)正常零件和缺陷零件的特征差異,實(shí)現(xiàn)準(zhǔn)確的缺陷檢測C.工業(yè)檢測中的計(jì)算機(jī)視覺系統(tǒng)需要具備高度的準(zhǔn)確性和穩(wěn)定性,能夠適應(yīng)不同的生產(chǎn)環(huán)境D.計(jì)算機(jī)視覺在工業(yè)檢測中只能檢測外觀缺陷,對于零件的內(nèi)部結(jié)構(gòu)和性能無法進(jìn)行評估16、在計(jì)算機(jī)視覺的圖像修復(fù)任務(wù)中,假設(shè)要填補(bǔ)圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復(fù)圖像的完整性和真實(shí)性?()A.基于擴(kuò)散的修復(fù)方法B.基于深度學(xué)習(xí)的圖像修復(fù)模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進(jìn)行修復(fù),保留圖像的缺失部分17、在計(jì)算機(jī)視覺中,目標(biāo)檢測是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含多種物體的圖像中準(zhǔn)確檢測出汽車的位置和類別。以下關(guān)于目標(biāo)檢測算法的描述,正確的是:()A.傳統(tǒng)的基于特征提取和分類器的方法在復(fù)雜場景下檢測效果優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的FasterR-CNN算法通過生成候選區(qū)域和分類回歸,能夠?qū)崿F(xiàn)高精度的目標(biāo)檢測C.目標(biāo)檢測算法只關(guān)注物體的外觀特征,不考慮物體之間的空間關(guān)系D.所有的目標(biāo)檢測算法對于小目標(biāo)的檢測都具有同樣出色的性能18、在計(jì)算機(jī)視覺的圖像增強(qiáng)處理中,目的是改善圖像的質(zhì)量和可讀性。假設(shè)我們要對一張低光照條件下拍攝的圖像進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)方法的描述,哪一項(xiàng)是不正確的?()A.直方圖均衡化可以通過調(diào)整圖像的灰度分布,增強(qiáng)圖像的對比度B.基于Retinex理論的方法可以分離圖像的光照和反射成分,從而改善圖像的視覺效果C.圖像增強(qiáng)算法可以在不增加噪聲的情況下,顯著提高圖像的亮度和清晰度D.不同的圖像增強(qiáng)方法適用于不同類型的圖像,需要根據(jù)具體情況選擇合適的方法19、計(jì)算機(jī)視覺中的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在跟蹤過程中發(fā)生了嚴(yán)重的形變。以下關(guān)于處理目標(biāo)形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應(yīng)地處理目標(biāo)形變,保持跟蹤的準(zhǔn)確性B.特征點(diǎn)跟蹤方法對目標(biāo)形變不敏感,在這種情況下仍然能夠可靠跟蹤C(jī).深度學(xué)習(xí)中的孿生網(wǎng)絡(luò)在目標(biāo)形變時(shí)容易丟失目標(biāo),無法繼續(xù)跟蹤D.結(jié)合多種特征和模型更新策略可以提高對目標(biāo)形變的跟蹤魯棒性20、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從一個(gè)大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像。這些圖像可能在內(nèi)容、風(fēng)格和主題上存在差異。為了提高檢索的效率和準(zhǔn)確性,以下哪種方法通常被采用?()A.基于全局特征的圖像表示和相似性度量B.只對圖像的標(biāo)簽進(jìn)行文本匹配,忽略圖像內(nèi)容C.隨機(jī)選擇數(shù)據(jù)庫中的圖像作為檢索結(jié)果D.不進(jìn)行任何預(yù)處理,直接在原始圖像上進(jìn)行檢索21、在計(jì)算機(jī)視覺的視頻壓縮中,為了在保證視覺質(zhì)量的同時(shí)減少數(shù)據(jù)量,以下哪種技術(shù)可能被廣泛應(yīng)用?()A.運(yùn)動(dòng)估計(jì)和補(bǔ)償B.圖像分割C.特征點(diǎn)檢測D.邊緣檢測22、計(jì)算機(jī)視覺中的圖像語義分割需要為圖像中的每個(gè)像素分配類別標(biāo)簽。假設(shè)要對一張城市街景圖像進(jìn)行語義分割,包括道路、建筑物、車輛和行人等。以下哪種圖像語義分割方法在處理這種復(fù)雜場景時(shí)能夠提供更精細(xì)的分割結(jié)果?()A.全卷積網(wǎng)絡(luò)(FCN)B.U-NetC.SegNetD.DeepLab23、在計(jì)算機(jī)視覺的文本檢測和識別任務(wù)中,假設(shè)要從一張圖片中提取并識別其中的文字信息。以下關(guān)于文本檢測和識別的描述,哪一項(xiàng)是不正確的?()A.可以先通過文本檢測算法定位圖片中的文本區(qū)域,然后進(jìn)行識別B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在文本識別中表現(xiàn)出色,能夠準(zhǔn)確識別各種字體和風(fēng)格的文字C.文本檢測和識別對于彎曲、傾斜和模糊的文字能夠輕松應(yīng)對,沒有任何困難D.可以結(jié)合光學(xué)字符識別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本24、在計(jì)算機(jī)視覺的圖像語義分割任務(wù)中,假設(shè)要處理具有多尺度特征的圖像,例如同時(shí)包含大物體和小物體的場景。以下關(guān)于處理多尺度特征的方法描述,正確的是:()A.使用單一尺度的特征提取網(wǎng)絡(luò)可以應(yīng)對多尺度問題,通過調(diào)整網(wǎng)絡(luò)參數(shù)即可B.采用多尺度輸入圖像,分別進(jìn)行處理后再融合結(jié)果,能夠有效解決多尺度問題,但計(jì)算量大C.空洞卷積在處理多尺度特征時(shí)會引入大量的噪聲,降低分割精度D.圖像語義分割中多尺度問題無法解決,只能盡量避免處理這類圖像25、計(jì)算機(jī)視覺中的遙感圖像分析用于獲取地球表面的信息。假設(shè)要從衛(wèi)星遙感圖像中分析土地利用類型和植被覆蓋情況,同時(shí)要克服圖像的大尺度和復(fù)雜的地物分布。以下哪種遙感圖像分析方法最為有效?()A.基于光譜特征的分析B.基于紋理特征的分析C.基于對象的圖像分析D.基于深度學(xué)習(xí)的分析26、在計(jì)算機(jī)視覺中,視頻摘要生成是從長視頻中提取關(guān)鍵內(nèi)容并生成簡潔的摘要。以下關(guān)于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關(guān)鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學(xué)習(xí)方法能夠?qū)W習(xí)視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲等方面具有實(shí)用價(jià)值D.視頻摘要生成能夠完全準(zhǔn)確地反映視頻的所有重要內(nèi)容,沒有任何信息丟失27、計(jì)算機(jī)視覺中的動(dòng)作識別是對視頻中人物或物體的動(dòng)作進(jìn)行分類和識別。以下關(guān)于動(dòng)作識別的描述,不準(zhǔn)確的是()A.動(dòng)作識別需要分析視頻中的時(shí)空特征來理解動(dòng)作的模式和類別B.雙流卷積網(wǎng)絡(luò)在動(dòng)作識別任務(wù)中被廣泛應(yīng)用,分別處理空間和時(shí)間信息C.動(dòng)作識別在體育分析、視頻監(jiān)控和智能安防等領(lǐng)域具有重要的應(yīng)用價(jià)值D.動(dòng)作識別技術(shù)已經(jīng)非常成熟,能夠準(zhǔn)確識別各種復(fù)雜和細(xì)微的動(dòng)作28、在計(jì)算機(jī)視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個(gè)區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進(jìn)行B.深度學(xué)習(xí)方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(luò)(FCN)C.圖像分割在醫(yī)學(xué)影像分析、自動(dòng)駕駛場景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準(zhǔn)確地將圖像中的所有物體都分割出來29、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,除了生成新的圖像,還可以對已有圖像進(jìn)行風(fēng)格轉(zhuǎn)換。假設(shè)我們要將一張照片轉(zhuǎn)換為油畫風(fēng)格,以下哪種方法能夠?qū)崿F(xiàn)逼真的風(fēng)格轉(zhuǎn)換效果?()A.基于圖像濾波和變換的方法B.基于深度學(xué)習(xí)的風(fēng)格遷移算法,如CycleGANC.基于圖像融合和合成的方法D.基于顏色映射和紋理合成的方法30、視頻分析是計(jì)算機(jī)視覺的一個(gè)重要領(lǐng)域。假設(shè)要對一段監(jiān)控視頻中的行為進(jìn)行分析和理解,以下關(guān)于視頻分析方法的描述,正確的是:()A.直接將視頻中的每一幀圖像作為獨(dú)立的圖像

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論