難點(diǎn)解析-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷含答案詳解(輕巧奪冠)_第1頁
難點(diǎn)解析-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷含答案詳解(輕巧奪冠)_第2頁
難點(diǎn)解析-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷含答案詳解(輕巧奪冠)_第3頁
難點(diǎn)解析-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷含答案詳解(輕巧奪冠)_第4頁
難點(diǎn)解析-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷含答案詳解(輕巧奪冠)_第5頁
已閱讀5頁,還剩45頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、已知為銳角,且,則()A. B. C. D.2、若函數(shù)y=(a﹣1)x2+2x+a2﹣1是二次函數(shù),則()A.a(chǎn)≠1 B.a(chǎn)≠﹣1 C.a(chǎn)=1 D.a(chǎn)=±13、如圖,將一張寬為2cm的長(zhǎng)方形紙片沿AB折疊成如圖所示的形狀,那么折痕AB的長(zhǎng)為(

)cmA. B. C.2 D.4、已知(a≠0,b≠0),下列變形正確的是()A. B. C.2a=3b D.3a=2b5、對(duì)于拋物線,下列說法正確的是()A.拋物線開口向上B.當(dāng)時(shí),y隨x增大而減小C.函數(shù)最小值為﹣2D.頂點(diǎn)坐標(biāo)為(1,﹣2)6、在同一直角坐標(biāo)系中,一次函數(shù)y=﹣kx+1與二次函數(shù)y=x2+k的大致圖象可以是()A. B. C. D.二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖是拋物線的一部分,拋物線的頂點(diǎn)坐標(biāo)是A(1,3),與x軸的一個(gè)交點(diǎn)是B(4,0),點(diǎn)P在拋物線上,且在直線AB上方,則下列結(jié)論正確的是(

)A. B.方程有兩個(gè)相等的實(shí)根C. D.點(diǎn)P到直線AB的最大距離2、如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,下列結(jié)論正確的是(

)A.AD+BC=CD B.∠DOC=90°C.S梯形ABCD=CD?OA D.OD2=DE?CD3、如圖,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,則下列結(jié)論不正確的是()A.sinA= B.tanA= C.cosB= D.tanB=4、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點(diǎn).則以下結(jié)論正確的有(

)A.B.當(dāng)時(shí),y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點(diǎn)D.若線段AB上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),則a的取值范圍是5、下列命題中,不正確的是(

)A.三點(diǎn)可確定一個(gè)圓B.三角形的外心是三角形三邊中線的交點(diǎn)C.一個(gè)三角形有且只有一個(gè)外接圓D.三角形的外心必在三角形的內(nèi)部或外部6、季是呼吸道疾病多發(fā)的季節(jié),為預(yù)防病毒的傳播,某學(xué)校用藥熏消毒法對(duì)教室進(jìn)行消毒,已知藥物釋放過程中,教室內(nèi)每立方米空氣中含藥量與時(shí)間成正比例;藥物釋放完畢后,y與t成反比例,如圖所示.空氣中的含藥量低于時(shí)對(duì)身體無害.則下列選項(xiàng)正確的是(

)A.藥物釋放過程中,y與t的函數(shù)表達(dá)式是B.藥物的釋放過程需要2hC.從開始消毒,6h后空氣中的含藥量低于D.空氣中含藥量不低于的時(shí)長(zhǎng)為6h7、對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“※”:,例如:4※2,因?yàn)?,所以,若函?shù),則下列結(jié)論正確的是(

)A.方程的解為,;B.當(dāng)時(shí),y隨x的增大而增大;C.若關(guān)于x的方程有三個(gè)解,則;D.當(dāng)時(shí),函數(shù)的最大值為1.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、在平面直角坐標(biāo)系中,已知拋物線y=mx-2mx+m-2(m>0).(1)拋物線的頂點(diǎn)坐標(biāo)為_________;(2)點(diǎn)M(x1,y1)、N(x2,y2)(x1<x2≤3)是拋物線上的兩點(diǎn),若y1<y2,x2-x1=2,則y2的取值范圍為_________(用含m的式子表示)2、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E.若AB=10,AE=1,則弦CD的長(zhǎng)是_____.3、圖1是一種手機(jī)托架,使用該手機(jī)托架示意圖如圖3所示,底部放置手機(jī)處寬AB1.2厘米,托架斜面長(zhǎng)BD6厘米,它有C到F共4個(gè)檔位調(diào)節(jié)角度,相鄰兩個(gè)檔位間的距離為0.8厘米,檔位C到B的距離為2.4厘米.將某型號(hào)手機(jī)置于托架上(圖2),手機(jī)屏幕長(zhǎng)AG是15厘米,O是支點(diǎn)且OBOE2.5厘米(支架的厚度忽略不計(jì)).當(dāng)支架調(diào)到E檔時(shí),點(diǎn)G離水平面的距離GH為__________cm.4、在平面直角坐標(biāo)系中,已知和是拋物線上的兩點(diǎn),將拋物線的圖象向上平移n(n是正整數(shù))個(gè)單位,使平移后的圖象與x軸沒有交點(diǎn),則n的最小值為_____.5、在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),頂點(diǎn)都是格點(diǎn)的三角形稱為格點(diǎn)三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點(diǎn)三角形,則該圖中所有與Rt△ABC相似的格點(diǎn)三角形中.面積最大的三角形的斜邊長(zhǎng)是_____.6、如圖1是臺(tái)灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點(diǎn),DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時(shí),最低點(diǎn)為C,且呈拋物線形,拋物線與弧MN交于點(diǎn)F,G.若△CDE是等腰直角三角形,且點(diǎn)C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.7、兩個(gè)任意大小的正方形,都可以適當(dāng)剪開,拼成一個(gè)較大的正方形,如用兩個(gè)邊長(zhǎng)分別為,的正方形拼成一個(gè)大正方形.圖中的斜邊的長(zhǎng)等于________(用,的代數(shù)式表示).四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,在中,,,,為的中點(diǎn).動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位向終點(diǎn)勻速運(yùn)動(dòng)(點(diǎn)不與、、重合),過點(diǎn)作的垂線交折線于點(diǎn).以、為鄰邊構(gòu)造矩形.設(shè)矩形與重疊部分圖形的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.(1)直接寫出的長(zhǎng)(用含的代數(shù)式表示);(2)當(dāng)點(diǎn)落在的邊上時(shí),求的值;(3)當(dāng)矩形與重疊部分圖形不是矩形時(shí),求與的函數(shù)關(guān)系式,并寫出的取值范圍;(4)沿直線將矩形剪開,得到兩個(gè)圖形,用這兩個(gè)圖形拼成不重疊且無縫隙的圖形恰好是三角形.請(qǐng)直接寫出所有符合條件的的值.2、新冠肺炎疫情期間,我國(guó)各地采取了多種方式進(jìn)行預(yù)防.其中,某地運(yùn)用無人機(jī)規(guī)勸居民回家.如圖,無人機(jī)于空中A處測(cè)得某建筑頂部B處的仰角為,測(cè)得該建筑底部C處的俯角為.若無人機(jī)的飛行高度為,求該建筑的高度(結(jié)果取整數(shù)),參考數(shù)據(jù):,,.3、內(nèi)接于⊙O,在劣弧上,連交于,連,.(1)如圖1,求證:;(2)如圖2,平分,求證:;(3)如圖3,在(2)條件下,點(diǎn)在延長(zhǎng)線上,連,于,,,,求⊙O半徑的長(zhǎng).4、如圖,矩形在平面直角坐標(biāo)系中,交軸于點(diǎn),動(dòng)點(diǎn)從原點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿軸正方向移動(dòng),移動(dòng)時(shí)間為秒,過點(diǎn)P作垂直于軸的直線,交于點(diǎn)M,交或于點(diǎn)N,直線掃過矩形的面積為.(1)求點(diǎn)的坐標(biāo);(2)求直線移動(dòng)過程中到點(diǎn)之前的關(guān)于的函數(shù)關(guān)系式;(3)在直線移動(dòng)過程中,第一象限的直線上是否存在一點(diǎn),使是等腰直角三角形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由5、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點(diǎn)O在射線AC上(點(diǎn)O不與點(diǎn)A重合),垂足為D,以點(diǎn)O為圓心,分別交射線AC于E、F兩點(diǎn),設(shè)OD=x.(1)如圖1,當(dāng)點(diǎn)O為AC邊的中點(diǎn)時(shí),求x的值;(2)如圖2,當(dāng)點(diǎn)O與點(diǎn)C重合時(shí),連接DF;求弦DF的長(zhǎng);(3)當(dāng)半圓O與BC無交點(diǎn)時(shí),直接寫出x的取值范圍.6、(1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,交于點(diǎn),連接交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長(zhǎng).-參考答案-一、單選題1、A【解析】【分析】根據(jù)特殊角的三角函數(shù)值解答.【詳解】∵為銳角,且,∴.故選A.【考點(diǎn)】此題考查的是特殊角的三角函數(shù)值,屬較簡(jiǎn)單題目.2、A【解析】【分析】利用二次函數(shù)定義進(jìn)行解答即可.【詳解】解:由題意得:a﹣1≠0,解得:a≠1,故選:A.【考點(diǎn)】本題主要考查了二次函數(shù)的定義,準(zhǔn)確計(jì)算是解題的關(guān)鍵.3、A【解析】【分析】作點(diǎn)A作,交BC于點(diǎn)D,作點(diǎn)B作,交AC于點(diǎn)E,根據(jù)長(zhǎng)方形紙條的寬得出,繼而可證明是等邊三角形,則有,然后在直角三角形中利用銳角三角函數(shù)即可求出AB的值.【詳解】作點(diǎn)A作,交BC于點(diǎn)D,作點(diǎn)B作,交AC于點(diǎn)E,∵長(zhǎng)方形的寬為2cm,,,.∴是等邊三角形,故選:A.【考點(diǎn)】本題主要考查等邊三角形的判定及性質(zhì),銳角三角函數(shù),掌握等邊三角形的判定及性質(zhì)和特殊角的三角函數(shù)值是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)比例的性質(zhì)“兩內(nèi)項(xiàng)之積等于兩外項(xiàng)之積”對(duì)各選項(xiàng)分析判斷即可得.【詳解】解:A、∵,∴,∴,選項(xiàng)說法錯(cuò)誤,不符合題意;B、∵,∴,∴,選項(xiàng)說法錯(cuò)誤,不符合題意;C、∵,∴,選項(xiàng)說法正確,符合題意;D、∵,∴,選項(xiàng)說法錯(cuò)誤,不符合題意;故選C.【考點(diǎn)】本題考查了比例的性質(zhì),解題的關(guān)鍵是熟記比例的性質(zhì).5、B【解析】【分析】根據(jù)二次函數(shù)圖象的性質(zhì)對(duì)各項(xiàng)進(jìn)行分析判斷即可.【詳解】解:拋物線解析式可知,A、由于,故拋物線開口方向向下,選項(xiàng)不符合題意;B、拋物線對(duì)稱軸為,結(jié)合其開口方向向下,可知當(dāng)時(shí),y隨x增大而減小,選項(xiàng)說法正確,符合題意;C、由于拋物線開口方向向下,故函數(shù)有最大值,且最大值為-2,選項(xiàng)不符合題意;D、拋物線頂點(diǎn)坐標(biāo)為(-1,-2),選項(xiàng)不符合題意.故選:B.【考點(diǎn)】本題主要考查了二次函數(shù)的性質(zhì),解題關(guān)鍵是熟練運(yùn)用拋物線的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)以及二次函數(shù)圖象的增減性解題.6、A【解析】【分析】二次函數(shù)圖象與y軸交點(diǎn)的位置可確定k的正負(fù),再利用一次函數(shù)圖象與系數(shù)的關(guān)系可找出一次函數(shù)y=-kx+1經(jīng)過的象限,對(duì)比后即可得出結(jié)論.【詳解】解:由y=x2+k可知拋物線的開口向上,故B不合題意;∵二次函數(shù)y=x2+k與y軸交于負(fù)半軸,則k<0,∴﹣k>0,∴一次函數(shù)y=﹣kx+1的圖象經(jīng)過經(jīng)過第一、二、三象限,A選項(xiàng)符合題意,C、D不符合題意;故選:A.【考點(diǎn)】本題考查了二次函數(shù)的圖象、一次函數(shù)圖象以及一次函數(shù)圖象與系數(shù)的關(guān)系,根據(jù)二次函數(shù)的圖象找出每個(gè)選項(xiàng)中k的正負(fù)是解題的關(guān)鍵.二、多選題1、BCD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、坐標(biāo)系內(nèi)直線的平移、利用配方法求二次三項(xiàng)式的最值即可一一判斷.【詳解】解:由圖象可知,,則,故A選項(xiàng)錯(cuò)誤;由圖象可知,直線與拋物線只有一個(gè)交點(diǎn),則方程有兩個(gè)相等的實(shí)根,故B選項(xiàng)正確;當(dāng)時(shí),拋物線由最大值,則,即,故C選項(xiàng)正確;設(shè)直線AB的表達(dá)式為,且A(1,3),B(4,0)在直線上,則,解得,,即,由拋物線的對(duì)稱軸為得,則,即,又A(1,3),B(4,0)在拋物線上,則,解得,,將直線向上平移與拋物線有一個(gè)交點(diǎn)時(shí)至,要求點(diǎn)P到直線AB的最大距離,即點(diǎn)P為直線與拋物線的交點(diǎn),過點(diǎn)作于,軸,如圖所示,由直線AB可得,為等腰直角三角形,又直線由直線平移得到,且軸,,,是等腰直角三角形,由平移的性質(zhì)可設(shè)直線的表達(dá)式為,當(dāng)與拋物線有一個(gè)交點(diǎn)時(shí),即,整理得,由于只有一個(gè)交點(diǎn),則,解得,即直線AB向上平移了:,則,則,點(diǎn)P到直線AB的最大距離,故D選項(xiàng)正確,故選BCD.【考點(diǎn)】本題考查了二次函數(shù)的圖象及性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、平面直角坐標(biāo)系內(nèi)直線的平移,解題的關(guān)鍵學(xué)會(huì)利用函數(shù)圖象解決問題,靈活運(yùn)用相關(guān)知識(shí)解決問題,本題難點(diǎn)在于要求拋物線上的點(diǎn)到直線的最大距離即求直線平移至與拋物線有一個(gè)交點(diǎn)時(shí)交點(diǎn)到直線的距離.2、ABCD【解析】【分析】選項(xiàng)A:連接OE,利用切線長(zhǎng)定理得到AD=ED,CE=CB,可得AD+BC=CD.選項(xiàng)B:OD、OC分別為角平分線,利用平角的定義及等式性質(zhì)得到∠COD為直角,選項(xiàng)C:由梯形的面積公式可知S梯形ABCD=(AD+BC)AB,再根據(jù)等量代換即可得出C選項(xiàng)正確.選項(xiàng)D:由上述分析可確定出三角形ODE與三角形COD相似,由相似得比例列出關(guān)系式,根據(jù)CD=DE+EC,等量代換得到AD+BC=CD,即可得到D正確.【詳解】解:連接OE,∵DA、DE為圓O的切線,∴AD=ED,∠AOD=∠EOD,∵CE、CB為圓O的切線,∴CE=CB,∠EOC=∠BOC,∴CD=DE+EC=AD+BC,∴選項(xiàng)A正確;∵∠AOD+∠DOE+∠EOC+∠BOC=180°,∴∠DOE+∠EOC=90°,即∠DOC=90°,∴選項(xiàng)B正確;∵S梯形ABCD=(AD+BC)AB,由上述解析可知CD=AD+BC,OA=AB,等量代換可得,S梯形ABCD=CD?OA∴選項(xiàng)C正確;∵OE⊥CD,∴∠OED=∠COD=90°,∵∠EDO=∠ODC,∴△DOE∽△DCO,∴,∴OD2=DE?CD,選項(xiàng)D正確;故答案為:ABCD.【考點(diǎn)】牢記切線的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.3、ABC【解析】【分析】先根據(jù)勾股定理求出AC=,再根據(jù)三角函數(shù)的定義分別求解可得.【詳解】解:A、sinA=,故該選項(xiàng)符合題意;B、tanA=,故該選項(xiàng)符合題意;C、cosB=,故該選項(xiàng)符合題意;D、tanB==,故該選項(xiàng)不符合題意;故選:ABC.【考點(diǎn)】本題主要考查了銳角三角函數(shù),正確記憶相關(guān)比例關(guān)系是解題關(guān)鍵.4、ACD【解析】【分析】求得頂點(diǎn)坐標(biāo),根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯(cuò)誤;二次函數(shù)是不為0的常數(shù))的頂點(diǎn),即可判斷③錯(cuò)誤;根據(jù)題意時(shí),時(shí),即可判斷④正確.【詳解】解:二次函數(shù),頂點(diǎn)為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點(diǎn),拋物線開口向上,,故①正確;時(shí),隨的增大而增大,故②錯(cuò)誤;由題意可知當(dāng),二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點(diǎn),故③正確;線段上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且對(duì)稱軸為直線,∴當(dāng)時(shí),,當(dāng)時(shí),,,解得,故④正確;故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.5、ABD【解析】【分析】根據(jù)圓的性質(zhì)定理逐項(xiàng)排查即可.【詳解】解:A.不在同一條直線上的三點(diǎn)確定一個(gè)圓,故本選項(xiàng)錯(cuò)誤;B.三角形的外心是三角形三邊垂直平分線的交點(diǎn),所以本選項(xiàng)是錯(cuò)誤;C.三角形的外接圓是三條垂直平分線的交點(diǎn),有且只有一個(gè)交點(diǎn),所以任意三角形一定有一個(gè)外接圓,并且只有一個(gè)外接圓,所以本選項(xiàng)是正確的;D.直角三角形的外心在斜邊中點(diǎn)處,故本選項(xiàng)錯(cuò)誤.故選:ABD.【考點(diǎn)】考查確定圓的條件以及三角形外接圓的知識(shí),掌握三角形的外接圓是三條垂直平分線的交點(diǎn)是解題的關(guān)鍵.6、AC【解析】【分析】根據(jù)題意及圖象先確定反比例函數(shù)解析式及正比例函數(shù)解析式,然后根據(jù)題意對(duì)各選項(xiàng)進(jìn)行判斷即可.【詳解】解:A、藥物釋放完畢后,y與t成反比例,設(shè),由圖象可得經(jīng)過點(diǎn),∴k=3×,∴,當(dāng)y=1時(shí),t=,∴正比例函數(shù)經(jīng)過點(diǎn),設(shè)正比例函數(shù)解析式為y=at,將點(diǎn)代入求得:a=,∴正比例函數(shù)解析式為y=t,故A正確;B、由A選項(xiàng)可得,當(dāng)t=時(shí),y達(dá)到最大為1,故B錯(cuò)誤;C、當(dāng)t=6時(shí),代入反比例函數(shù)可得:,∴6h后空氣中的含藥量低于0.25mg/m3,故C正確;D、根據(jù)圖象及C選項(xiàng)可得:空氣中含藥量不低于0.25mg/m3的時(shí)長(zhǎng)小于6h,故D錯(cuò)誤;故選:AC.【考點(diǎn)】題目主要考查一次函數(shù)與反比例函數(shù)的綜合應(yīng)用,理解題意,確定出一次函數(shù)與反比例函數(shù)解析式是解題關(guān)鍵.7、ABD【解析】【分析】根據(jù)題干定義求出y=(2x)※(x+1)的解析式,根據(jù)2x≥x+1及2x<x+1可得x≥1時(shí)y=2x2﹣2x,x<1時(shí),y=﹣x2+1,進(jìn)而求解.【詳解】解:根據(jù)題意得:當(dāng)2x≥x+1,即x≥1時(shí),y=(2x)2﹣2x(x+1)=2x2﹣2x,當(dāng)2x<x+1,即x<1時(shí),y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當(dāng)x≥1時(shí),2x2﹣2x=0,解得x=0(舍去)或x=1,當(dāng)x<1時(shí),﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當(dāng)x>1時(shí),y=2x2﹣2x,拋物線開口向上,對(duì)稱軸是直線x=,∴x>1時(shí),y隨x的增大而增大,∴B選項(xiàng)正確.當(dāng)x≥1時(shí),y=2x2﹣2x=2(x﹣)2﹣,∴x=1時(shí),y取最小值為y=0,當(dāng)x<1時(shí),y=﹣x2+1=0,當(dāng)x=0時(shí),y取最大值為y=1,如圖,當(dāng)0<m<1時(shí),方程(2x)※(x+1)=m有三個(gè)解,∴選項(xiàng)C錯(cuò)誤,選項(xiàng)D正確.故答案為:ABD.【考點(diǎn)】本題考查二次函數(shù)的新定義問題,解題關(guān)鍵是掌握二次函數(shù)的性質(zhì),掌握二次函數(shù)與方程的關(guān)系.三、填空題1、

(1,-2)

【解析】【分析】(1)將二次函數(shù)解析式化為頂點(diǎn)式求解;(2)拋物線的對(duì)稱軸為直線x=1,得到當(dāng)點(diǎn)M,N關(guān)于拋物線的對(duì)稱軸對(duì)稱時(shí),x1+x2=2,結(jié)合x2-x1=2,可得x1=0,x2=2,得到當(dāng)2<x2≤3時(shí),y1<y2,再將x=2、x=3代入函數(shù)關(guān)系式進(jìn)行求解即可.【詳解】(1)∵,∴拋物線頂點(diǎn)坐標(biāo)為(1,-2),故答案為(1,-2).(2)∵拋物線的對(duì)稱軸為直線x=1,∴當(dāng)點(diǎn)M,N關(guān)于拋物線的對(duì)稱軸對(duì)稱時(shí),x1+x2=2,結(jié)合x2-x1=2,可得x1=0,x2=2,∴當(dāng)2<x2≤3時(shí),y1<y2,對(duì)于y=m(x-1)2-2,當(dāng)x=2時(shí),y=m-2;當(dāng)x=3時(shí),y=4m-2,∴.【考點(diǎn)】本題考查二次函數(shù)圖象上的點(diǎn)的特征,解題關(guān)鍵是掌握二次函數(shù)與方程及不等式的關(guān)系.2、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計(jì)算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點(diǎn)】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧是解題的關(guān)鍵.3、【解析】【分析】如圖3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性質(zhì)求出DT,BT,AD,即可求出GH的長(zhǎng).【詳解】如圖3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案為:.【考點(diǎn)】本題考查了相似三角形的應(yīng)用,勾股定理的應(yīng)用等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考填空題中的壓軸題.4、4【解析】【分析】通過A、B兩點(diǎn)得出對(duì)稱軸,再根據(jù)對(duì)稱軸公式算出b,由此可得出二次函數(shù)表達(dá)式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標(biāo)一樣,∴A、B是對(duì)稱的兩點(diǎn),∴對(duì)稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(diǎn)(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點(diǎn)】本題考查二次函數(shù)對(duì)稱軸的性質(zhì),頂點(diǎn)式的變形及拋物線的平移,關(guān)鍵在于根據(jù)對(duì)稱軸的性質(zhì)從題意中判斷出對(duì)稱軸.5、5【解析】【分析】根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為1:2,以及6×6網(wǎng)格圖形中,最長(zhǎng)線段為6,進(jìn)行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點(diǎn)三角形的兩直角邊的比值為1:2,若該三角形最短邊長(zhǎng)為4,則另一直角邊長(zhǎng)為8,但在6×6網(wǎng)格圖形中,最長(zhǎng)線段為6,但此時(shí)畫出的直角三角形為等腰直角三角形,從而畫不出端點(diǎn)都在格點(diǎn)且長(zhǎng)為8的線段,故最短直角邊長(zhǎng)應(yīng)小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時(shí)△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長(zhǎng)為:5.故答案為:5.【考點(diǎn)】本題考查了作圖-應(yīng)用與設(shè)計(jì)、相似三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.6、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達(dá)式為y=ax2+1,因?yàn)椤鰿DE是等腰直角三角形,DE=2,得點(diǎn)E的坐標(biāo)為(1,2),可得拋物線的表達(dá)式為y=x2+1,把當(dāng)y代入拋物線表達(dá)式,求得MH的長(zhǎng),再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設(shè)拋物線的表達(dá)式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點(diǎn)E的坐標(biāo)為(1,2),代入拋物線的表達(dá)式,得:2=a+1,a=1,∴拋物線的表達(dá)式為y=x2+1,當(dāng)y時(shí),即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點(diǎn)】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達(dá)式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達(dá)式.7、【解析】【分析】根據(jù)題意及勾股定理可得BC2=;又因Rt△ABC的邊BC在斜邊AB上的射影為a,根據(jù)射影定理可得BC2=a?AB,由此即可解答.【詳解】根據(jù)題意及勾股定理可得:BC2=;由題意可得:Rt△ABC的邊BC在斜邊AB上的射影為a,∴BC2=a?AB,即可得AB=.故答案為.【考點(diǎn)】本題考查射影定理的知識(shí),注意掌握每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng).四、解答題1、(1),;(2);(3);(4)或.【解析】【分析】(1)根據(jù)P點(diǎn)的運(yùn)動(dòng)速度和BD的長(zhǎng)度即可出結(jié)果;(2)畫出圖象,根據(jù)三角形的相似求出各個(gè)線段長(zhǎng),即可解決;(3)分情況討論,矩形與重疊部分面積即為矩形面積減去△ABC外部的小三角形面積,通過三角函數(shù)計(jì)算出各邊長(zhǎng)求面積即可;(4)要想使被直線分割成的兩部分能拼成不重疊且無縫隙的圖形恰好是三角形,則需要被分割的是兩個(gè)至少有一條相等邊長(zhǎng)的直角三角形,或者直線正好過正方形一條邊的中點(diǎn),分情況畫圖求解即可.【詳解】解:(1)∵,為的中點(diǎn),∴,P從B運(yùn)動(dòng)到點(diǎn)D所需時(shí)間為1s,由題意可知,;(2)如圖所示,由題意得,∴,∵,,,∴,∴,由四邊形是矩形可知,∠QPD=∠MDP=90°,PQ=DM,即∠APQ=∠BDM=90°,∵∠B=∠B,∠BDM=∠ACB=90°,∴△MDB∽△ACB,∴,即,∴,即∵∠A=∠A,∠APQ=∠ACB=90°,∴△APQ∽△ACB,∴,即,解得;(3)當(dāng)時(shí),如圖,DM交BC于點(diǎn)F,由矩形可知PD∥QM,∴∠FQM=∠B=30°,此時(shí),∴,∴,解得,,同理,,解得,,,當(dāng)時(shí),如圖,DM交BC于點(diǎn)F,QM交BC于E,,由題意可知∠A=60°,,∴,即,,得,∴,∵,∴,,,∴,綜上所述:;(4)如圖所示,當(dāng)Q與C重合時(shí),滿足條件,由前面解題過程可知此時(shí),當(dāng)PQ=DM時(shí),此時(shí)直線CD正好過QM的中點(diǎn),滿足條件,此時(shí),當(dāng)直線CD正好過PQ的中點(diǎn)G時(shí),滿足條件,如圖,由前面計(jì)算可知,則,,解得,綜上所述,或.【考點(diǎn)】本題考查了動(dòng)點(diǎn)問題,熟練掌握三角函數(shù),矩形的性質(zhì)是解題的關(guān)鍵.2、42m【解析】【分析】如圖,過點(diǎn)A作,垂足為E.利用,求解即可.【詳解】解:如圖,過點(diǎn)A作,垂足為E.由題意可知,,,.在中,,∴.在中,,.∵,∴.答:該建筑的高度約為.【考點(diǎn)】本題考查了解斜三角形,通過作高化斜三角形為直角三角形,并準(zhǔn)確求解是解題的關(guān)鍵.3、(1)見解析;(2)見解析;(3)【解析】【分析】(1)如圖,連接,由和分別是弧所對(duì)的圓心角和圓周角,利用圓周角定理可得,由,可得,OC平分,由,利用三線合一可證即可.

(2)如圖,過點(diǎn)作于,由平分,,,可得,,,由勾股定理得,,可求即可.(3)由,可得,由,可得,由,,可得,由平分,可得,由,可得,可證,可得,即,可求,由勾股定理,可求即可得到答案.【詳解】證明(1)如圖,連接,∵和分別是弧所對(duì)的圓心角和圓周角,∴,∵,∴,∴,∵,∴.

(2)如圖,過點(diǎn)作于,∵平分,,,∴,,,

∵,,∴,∴.

(3)∵,∴,∵,∴,

∵,,∴,∴,∵平分,∴,∵,∴,∴,

∵,∴,∴,∵,∴,∴,∵,,∴,解得:,(舍去),∴,∴,∴,即半徑的長(zhǎng)是.【考點(diǎn)】本題考查圓周角定理,等腰三角形性質(zhì),角平分線性質(zhì),勾股定理,相似三角形判定與性質(zhì),掌握?qǐng)A周角定理,等腰三角形性質(zhì),角平分線性質(zhì),勾股定理,相似三角形判定與性質(zhì)是解題關(guān)鍵.4、(1);(2);(3)存在.【解析】【分析】(1)由,且AB=6即可求出AO的長(zhǎng),再由勾股定理即可求出BO的長(zhǎng),即可求出A和B點(diǎn)坐標(biāo).(2)P點(diǎn)從原點(diǎn)出發(fā),在到達(dá)終點(diǎn)前,直線l掃過的面積始終為平行四邊形BMNE,故求該平行四邊的底BE和高OP,相乘即得到面積S;由,且AB=6,可求出AC=10,過D點(diǎn)作DF⊥x軸,易證,求出CF=AO,進(jìn)而求出OF的長(zhǎng);由,故,求出OE的長(zhǎng),進(jìn)而求出OB+OE=BE.(3)分類討論,當(dāng)B為直角頂角時(shí),過Q1點(diǎn)作QH⊥y軸,此時(shí)△Q1HB≌△BOC,即可求出Q1的坐標(biāo);當(dāng)Q2為直角頂角時(shí),過Q2點(diǎn)作QM⊥y軸,QN⊥x軸,此時(shí)Q2MB≌Q2NC,即可求出Q2的坐標(biāo).【詳解】解:(1)由題意可得故答案為:(2)過點(diǎn)作軸,垂足為F,則

∴∵∴,故,求得.當(dāng)時(shí),直線掃過的圖形是平行四邊形,故答案為:.存在,.如下圖所示:情況一:當(dāng)B為直角頂角時(shí),此時(shí)BQ1=BC,過Q1點(diǎn)作Q1H1⊥y軸于H1,∴∠Q1H1B=∠BOC=90°,且BQ1=BC,∵∠Q1BC=90°∴∠H1BQ1+∠OBC=90°又∠BCO+∠OBC=90°∴∠H1BO1=∠BCO在△Q1H1B和△BOC中:,∴△△Q1H1B≌△BOC(AAS)∴Q1H1=BO=,BH1=OC=,∴OH1=∴情況二:當(dāng)Q2為直角頂角時(shí),此時(shí)有Q2B=Q2C,過Q2點(diǎn)分別作Q2M⊥y軸,Q2N⊥x軸∴∠MQ2B+∠BQ2N=90°又∴∠NQ2C+∠BQ2N=90°∴∠MQ2B=∠NQ2C在△MQ2B和△NQ2C中,∴△MQ2B≌△NQ2C(AAS)∴MQ2=NQ2=OM=ON,且∠MON=90°∴四邊形Q2MON為正方形,設(shè)MB=NC=a則OC-a=ON=OB=,且OC=∴求得a=,∴ON=OM=OB+a=∴故答案為:和【考點(diǎn)】本題考查了三角函數(shù)求值、平行四邊形的面積公式、三角形全等、等腰直角三角形等相關(guān)知識(shí),利用銳角相等,其對(duì)應(yīng)的三角函數(shù)值相同,可列出比例求解未知線段長(zhǎng).5、(1);(2);(3)滿足條件的x取值范圍為:0<x<3或x>12.【解析】【分析】(1)先求出OA,再判斷出,得出比例式求出x的值,即可得出結(jié)論;(2)先利用等面積求出x知,再判斷出,進(jìn)而求出DH,OH,最后用勾股定理求出DF,即可得出結(jié)論;(3)分兩種情況:點(diǎn)O在邊AC上和在AC的延長(zhǎng)線上,找出分界點(diǎn),求出x值,即可得出結(jié)論.【詳解】(1)在Rt△ABC中,AB=10,根據(jù)勾股定理得,,∵點(diǎn)O為AC邊的中點(diǎn),∴AO=AC=,∵OD⊥AB,∠ACB=90°,∴∠ADO=∠ACB,又∵∠A=∠A,∴.∴,∴,∴.(2)如圖,過點(diǎn)D作DH⊥AC于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論